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Calibration
I Need fast methods for European options for calibration
I A number of SV models for interest rates and hybrids have

been put forward recently, with various approaches to
calibration

I Many of these approaches can be aggregated into what we call
the Markovian Projection method:

a generic, powerful framework for deriving closed-form
approximations to European option prices

Step 1 Apply Markovian projection to S (·) , a technique to
replace a complicated process with a simple one,
preserving European option prices

Step 2 Approximate conditional expected values required
Step 3 Apply parameter averaging techniques to obtain

time-independent coefficients from time-dependent
Step 4 Hopefully a simple model is obtained, use known

results.



The Markovian projection

Theorem (Dupire 97, Gyongy 86) Let X (t) be given by

dX (t) = α (t) dt + β (t) dW (t) , (1)

where α (·) , β (·) are adapted bounded stochastic
processes such that (1) admits a unique solution.
Define a (t, x) , b (t, x) by

a (t, x) = E (α (t)|X (t) = x) ,

b2 (t, x) = E
(
β2 (t)

∣∣X (t) = x
)
,

Then the SDE

dY (t) = a (t,Y (t)) dt + b (t,Y (t)) dW (t) , (2)
Y (0) = X (0) ,

admits a weak solution Y (t) that has the same
one-dimensional distributions as X (t) .

I See [Dup97], [Gyö86]



The Markovian projection, cont

Remark 1 Since X (·) and Y (·) have the same one-dimensional
distributions, the prices of European options on X (·)
and Y (·) for all strikes K and expiries T will be the
same. Thus, for the purposes of European option
valuation and/or calibration to European options, we
can replace a potentially very complicated process
X (·) with a much simpler Markov process Y (·) ,
which we call the Markovian projection of X (·) .

Remark 2 The process Y (·) follows what is known as a “local
volatility” process. The function b (t, x) is often
called “Dupire’s local volatility”



The Markovian projection, cont

I If X (·) itself came from a local volatility model (perhaps
complicated), then replacing it with a (simpler) local vol
model is probably the right thing to do. But:

I Any process (including a stochastic volatility one) can be
replaced by a local volatility process for the purposes of
European option valuation. Is it a good idea?

I Requires calculations of conditional expected values. This is
the hard bit. Approximations often necessary

I In approximations, better to replace “like for like”. Replace a
(complicated) SV model with a (simpler) SV model.

I Approximations to conditional expected values may be simpler
I Errors of approximations will tend to “cancel out”

I Dupire-Gyongy theorem still works
Corollary If two processes have the same Dupire’s local

volatility, the European option prices on both are the
same for all strikes and expiries



The Markovian projection for SV

I Let X1 (t) follow

dX1 (t) = b1 (t,X1 (t))
√
ζ1 (t) dW (t) ,

where ζ1 (t) is some variance process.
I We would like to match the European option prices on X1 (·)

(for all expiries and strikes) in a model of the form

dX2 (t) = b2 (t,X2 (t))
√
ζ2 (t) dW (t) ,

where ζ2 (t) is a different, and potentially simpler, variance
process.

I Then the Corollary and the Theorem imply that we need to
set

b2
2 (t, x) = b2

1 (t, x)
E (ζ1 (t)|X1 (t) = x)

E (ζ2 (t)|X2 (t) = x)
. (3)

I Error cancellation – whatever approximations are used for
conditional expected values in (3), hopefully they will tend to
cancel when we take the ratio



Simple SV model

I After applying the MP method, often get the SDEs of the
form

dz (t) = θ (1− z (t)) dt + γ (t)
√

z (t) dV (t) , (4)
dS (t) = (β (t) S (t) + (1− β (t))S (0))σ (t)

√
z (t) dW (t) ,

I Or, rather, we apply the MP method with the goal of
obtaining the SDEs in this form

I Choose z to be the square root process
I Linearize the volatility term of S

I Why? When parameters are constant, this is the (shifted)
Heston model, a model with very efficient numerical methods
for European option valuation, see [AA02].

I How to replace time-dependent parameters with constant?
Parameter averaging. Proofs and details in [Pit05b], [Pit05a]



Example of averaging formula

I For motivation, consider a log-normal model with
time-dependent volatility,

dS (t) = σ (t) S (t) dW (t) .

I It is known that, an option value with expiry Tn in this model
is equal to the Black-Scholes option value with “effective”
volatility

σn =

(
1

Tn

∫ Tn

0
σ2 (t) dt

)1/2

.

I Calibration by solving the following equations∫ Tn

0
σ2 (t) dt = σ2

nTn, n = 1, . . . ,N.

Linear in σ2 (t) , trivial to solve.
I Direct link between “model” parameter σ (t) and “market”

parameters (σn)



Averaging volatility of variance

I
∫ T
0 σ2 (t) z (t) dt is ’‘realized variance”

I Curvature of the smile depends on the variance of realized
variance (kurtosis, 4-th moment)

I Averaged vol of variance η (to T) is obtained by solving

E
(∫ T

0
σ2 (t) z (t) dt

)2

= E
(∫ T

0
σ2 (t) z̄ (t) dt

)2

,

where

dz (t) = θ (1− z (t)) dt + γ (t)
√

z (t) dV (t) ,
dz̄ (t) = θ (1− z̄ (t)) dt + η

√
z̄ (t) dV (t) .



Averaging skew

I Fixed T, vol of variance already averaged (use constant η)
I Time-dependent skew

dS (t) = σ (t) (β (t) S (t) + (1− β (t))S (0))
√

z (t)dW (t) ,

I Constant skew

dS̄ (t) = σ (t)
(
bS̄ (t) + (1− b) S̄ (0)

)√
z (t)dW (t) .

I Given β (·) , find b such that option prices for different strikes
(same expiry T) are matched between two models



Averaging skew, cont

I The main result. In the “small skew” limit,

b =

∫ T

0
β (t) w (t) dt,

where

w (t) =
v2 (t)σ2 (t)∫ T

0 v2 (t)σ2 (t) dt
,

v2 (t) = E
(
z (t) (S0 (t)− x0)

2
)
.

I Comments:
I “Total skew” b is the average of “local skews” β (t) with

weights w (t)
I Weights proportional to total variance, i.e. local slope further

away matters more
I Example: No SV (η = 0), constant volatility σ (t) ≡ σ,

b =
(
T2/2

)−1
∫ T

0
tβ (t) dt.



Averaging volatility

I Approximate the dynamics of

dS (t) = σ (t) (bS (t) + (1− b) S (0))
√

z (t) dW (t)

with

dS̄ (t) = λ
(
bS̄ (t) + (1− b) S̄ (0)

)√
z (t) dW (t) .

I Can do numerically as in [Lew00], [AA02]: Do Fourier integral
with integrand a solution to Riccati ODEs. Slow.

I Can use moment-matching

E (S (T)− S0)
2 = E

(
S̄ (T)− S0

)2
,

∫ T

0
σ2 (t) dt = λ2T.

Not always accurate
I Better: approximate a European option payoff locally with a

function whose expectation can be computed in both models
above; choose λ to match the two.



Averaging volatility, cont

I By conditioning on the realized variance

E (S (T)− S0)
+ = Eg

(∫ T

0
σ2 (t) z (t) dt

)
,

where g is a known function.
I Approximate

g (x) ≈ a + be−cx

by matching the value and first two derivatives at

ζ = E
∫ T

0
σ2 (t) z (t) dt

I The problem reduced to finding λ such that

E exp
(

g′′ (ζ)
g′ (ζ)

∫ T

0
σ2 (t) z (t) dt

)
= Eexp

(
λ2 g′′ (ζ)

g′ (ζ)

∫ T

0
z (t) dt

)
.

I Very fast and easy numerical search for λ (starting with a
good initial guess λ2 = T−1

∫ T
0 σ2 (t) dt).



Direct calibration to market
I In equity/FX: Let σmkt (T,K) be market volatilities for all

expiries T and strikes K (assumed known). Given an
exogenous SV process z (t) , find b (t, x) such that the model

dS (t) = b (t,S (t))
√

z (t) dW (t) , S (0) = S0,

matches the market
I Define Dupire’s market local volatility bmkt (t, x) by the

requirement that the local volatility model with bmkt (t, x)
matches the whole market. Easy to compute

bmkt (t, x) =
2∂C/∂t
∂2C/∂x2

.

I Then, from Theorem and Corollary,

b2 (t, x) =
b2

mkt (t, x)

E (z (t)|S (t) = x)
. (5)

I In practice E (z (t)|S (t) = x) is often computed numerically in
a forward PDE in (S, z) . Slow and noisy.



Direct calibration to market, cont

I Define a “proxy” process X (t) by

dX (t) = b̃ (t,X (t))
√

z (t) dW (t) , X (0) = S0, (6)

where b̃ (t, x) is such that European options on X are easy to
compute

I Define the “proxy” Dupire’s local volatility bproxy (t, x) as
before but for European options on X (not on market). Then

E (z (t)|X (t) = x) =
b2

proxy (t, x)

b̃2 (t, x)
, (7)

thus having a stochastic volatility model with
cheaply-computable European option prices allows us to
compute the conditional expected values easily.

I Combining the two results we get

b (t, x) = b̃ (t, x)× bmkt (t, x)

bproxy (t, x)
×
(

E (z (t)|X (t) = x)

E (z (t)|S (t) = x)

)/12

.



Direct calibration to market, cont

I Choice 1: Approximate
E (z (t)|X (t) = x) = E (z (t)|S (t) = x)

I Choice 2: Link S (t) and X (t) .
I Define H (t, s) by the requirement that H (t,S (t)) has the same

dW term as dX (H a function of b, b̃)
I Then approximate

X (t) ≈ H (t,S (t)) ,
E (z (t)|S (t) = x) ≈ E (z (t)|X (t) = H (t, x)) .

I Functional equation on b,

b (t, x) = b̃ (t,H (t, x))
bmkt (t, x)

bproxy (t,H (t, x))
. (8)

I Last derivation is an example of a clever way of computing
conditional expectations

I Original result due to Forde ([For06]). More details in
[Pit06a].



Basket modeling

I Consider a “simple” local volatility model for a basket
S (t) =

∑
wiSi (t) ,

dSi (t) = ϕi (Si (t)) dWi (t) , i = 1, . . . , I.

I Options on index S (·) . Apply MP to write SDE for S. Start

dS (t) = σ (t) dW (t) ,

σ2 (t) =
N∑

n,m=1

wnwmϕn (Sn (t))ϕm (Sm (t)) ρnm.

I Then

dS (t) = ϕ (t,S (t)) dW (t) ,
ϕ2 (t, x) = E

(
σ2 (t)

∣∣ S (t) = x
)
.



Basket modeling, cont

I To compute E
(
σ2 (t)

∣∣ S (t)
)

use Gaussian approximation
Si ≈ S̄i, S ≈ S̄,

dS̄i (t) = pi dWi (t) , dS̄ (t) = σ (0) dW (t) ,

pi = ϕi (Si (0)) , σ (0) =
N∑

n,m=1

wnwmpnpmρnm,

and linearization

ϕi (x) ≈ pi + qi (x− S (0)) , qi = ϕ′i (Si (0)) .

I Then

E
(
S̄n (t)− Sn (0)

∣∣ S̄ (t) = x
)

= ρn
pn

p
(x− S (0)) ,

ρn ,
〈
dW̄ (t) ,dWn (t)

〉
/dt =

1
p

N∑
m=1

wmpmρnm.

I See more in [Pit06a]. More accurate method in [ABOBF02].



Spread options in SV model

I For spread options, important to use different SV process for
each variable (see [Pit06c]),

dSi (t) = ϕi (Si (t))
√

zi (t) dWi (t) , i = 1, 2,
dzi (t) = θ (1− zi (t)) dt + ηi

√
zi (t) dW2+i (t) , zi (0) = 1,

with the correlations given by

〈dWi (t) ,dWj (t)〉 = ρij i, j = 1, . . . , 4.

I Denote
pi = ϕi (Si (0)) , qi = ϕ′i (Si (0)) .

I Write down dS (·) for spread S = S1 − S2

I Identify a suitable “spread variance” process z (·)
I Compute the skew function ϕ (·) of the spread using the

Markovian projection ideas above
I “Massage” z (·) into the Heston form



Process for the spread

I We have
dSi (t) = ϕi (Si (t))

√
zi (t) dWi (t) ,

I S = S1 − S2, then dS (t) = σ (t) dW (t) , where

σ2 (t) = (ϕ1 (S1 (t))u1 (t))2

−2 (ϕ1 (S1 (t))u1 (t)) (ϕ2 (S2 (t))u2 (t)) ρ12

+(ϕ2 (S2 (t))u2 (t))2 ,

dW (t) =
1

σ (t)
(ϕ1 (S1 (t))u1 (t) dW1 (t)

−ϕ2 (S2 (t))u2 (t) dW2 (t)) ,
ui (t) =

√
zi (t), i = 1, 2.



Process for the variance of the spread

I Try to find a stochastic volatility process z (·) such that the
curvature of the smile of the spread S (·) is explained by it,
and the local volatility function is only used to induce the
volatility skew

I To identify a suitable candidate for z (·), consider what the
expression for σ2 (t) would be if ϕi (x) , i = 1, 2, were constant
functions.

I In this case, the expression for σ2 (t) above would not involve
the processes Si (·) , i = 1, 2 and this is a good candidate for
the stochastic variance process.

I We define (the division by σ2 (0) is to preserve the scaling
z (0) = 1)

z (t) =
1
p2

(
(p1u1 (t))2 − 2p1p2u1 (t) u2 (t) ρ12 + (p2u2 (t))2

)
,

(9)
where

p = σ (0) =
(
p2

1 − 2p1p2ρ12 + p2
2

)1/2
. (10)



Skew function of the spread

I By Corollary,

ϕ2 (t, x) =
E
(
σ2 (t)

∣∣ S (t) = x
)

E (z (t)|S (t) = x)
. (11)

I The expression for E
(
σ2 (t)

∣∣ S (t) = x
)

is a linear
combinations of the conditional expected values of the terms

ϕi (Si (t))ϕj (Sj (t))ui (t) uj (t) ,

I Approximate to the first order by

pipj

(
1 +

qi

pi
(Si (t)− Si (0)) +

qj

pj
(Sj (t)− Sj (0)) + . . .

)
.

I Use Gaussian approximation to compute conditional expected
values



Gaussian approximation

I Use X̄ to denote a Gaussian approximation to X for a generic
X, then

E (Si (t)− Si (0)|S (t) = x) ≈ E
(
S̄i (t)− S̄i (0)

∣∣ S̄ (t) = x
)

E (ui (t)− 1|S (t) = x) ≈ E
(
ūi (t)− 1| S̄ (t) = x

)
,

I Here (we ignore dt terms for du, although they may be
included for more accurate approximations)

dS̄i (t) = pi dWi (t) , dS̄ (t) = pdW̄ (t) , (12)

dūi (t) =
ηi

2
dW2+i (t) , dW̄ (t) =

1
p

(p1 dW1 (t)− p2 dW2 (t)) .

I Then

E
(
S̄i (t)− S̄i (0)

∣∣ S̄ (t) = x
)

=
piρi

p
(x− S (0)) ,

E
(
ūi (t)− 1| S̄ (t) = x

)
=

ηiρ2+i

2p
(x− S (0)) ,



Skew function of the spread

I Combining the results, we get the following approximation to
the spread dynamics,

dS (t) = ϕ (S (t))
√

z (t) dW (t) ,

I Here ϕ (x) is a function of the same type as ϕi (x) (linear or
CEV) with

ϕ (S (0)) = p, ϕ′ (S (0)) = q,

where

p =
(
p2

1 − 2p1p2ρ12 + p2
2

)1/2

q ,
1
p
(
p1ρ

2
1q1 − p2ρ

2
2q2

)
.



Variance process for the spread

I The process for S is in a nice form. But z is not:

z (t) =
1
p2

(
p2

1z1 (t)− 2p1p2

√
z1 (t) z2 (t)ρ12 + p2

2z2 (t)
)
.

I Compute dz,

dz (t) = δ1 (t) dt + δ2 (t) dt + δ3 (t) dt
+ξ1 (t) dW3 (t) + ξ2 (t) dW4 (t) ,

I dW terms

ξ1 (t) = η1
p2

1

p2

(√
z1 (t)− p2

p1
ρ12

√
z2 (t)

)
,

ξ2 (t) = η2
p2

2

p2

(√
z2 (t)− p1

p2
ρ12

√
z1 (t)

)
.



Variance process for the spread, cont

I dt terms

δ1 (t) = θ
p2

1

p2

(
1− p2

p1
ρ12

√
z2 (t)
z1 (t)

)
(1− z1 (t)) ,

δ2 (t) = θ
p2

2

p2

(
1− p1

p2
ρ12

√
z1 (t)
z2 (t)

)
(1− z2 (t)) ,

δ3 (t) =
p1p2ρ12

4p2

(√
z2 (t)
z1 (t)

η2
1 − 2η1η2ρ34 +

√
z1 (t)
z2 (t)

η2
2

)
.

I Complicated expression, Not “closed” in z (·)



Variance process for the spread, cont

I The curvature of the volatility smile (of options on S (·)) is
driven by the variance of the stochastic variance

I It is preserved under the Markovian projection of z (·) so can
apply the Theorem again, now to the process for z (·)!

I Formulas getting unwieldy: need to compute conditional
expected values of the type E

(√
zi (t) zj (t)

∣∣ z (t) = x
)

and
E
(√

zi (t) /zj (t)
∣∣ z (t) = x

)
, for which we would apply the

Gaussian approximations
I Try something simpler:

I replace
√

z1 (t),
√

z2 (t) in the dW terms with
√

z (t);
I replace

√
z2(t)
z1(t) ,

√
z1(t)
z2(t) in dt terms with 1.

I δ1 (t) + δ2 (t) becomes θ (1− z) ,



Variance process for the spread, simple
approximation

I δ3 (t) becomes

γ ,
p1p2ρ12

4p2

(
η2
1 − 2η1η2ρ34 + η2

2

)
. (13)

I The dW terms can be re-written as η
√

z (t) dB (t) , where

η2 =
1
p2

(
(p1η1ρ1)

2 − 2 (p1η1ρ1) (p2η2ρ2) ρ34 + (p2η2ρ2)
2
)
,

dB (t) =
1
η

(p1η1ρ1 dW3 (t)− p2η2ρ2 dW4 (t)) .

I Altogether

dS (t) = ϕ (S (t))
√

z (t) dW (t) ,

dz (t) = θ
(
1 +

γ

θ
− z (t)

)
dt + η

√
z (t) dB (t) .

I Linearize ϕ and apply Heston valuation formula to options on
the spread S!



Local volatility short rate model

I Simplest interest rate model: one-factor Gaussian
(“Hull-White”)

r (t) = f (0, t)+x (t) , dx (t) = (θ (t)− ax (t)) dt+σ (t) dW (t) .

I Local-volatility extension: quasi-Gaussian (“Cheyette”)

dx (t) = (y (t)− ax (t)) dt + σ (t, x (t) , y (t)) dW (t) ,
dy (t) =

(
σ2 (t, x (t) , y (t))− 2ay (t)

)
dt.

I Swap rate (under swap measure), S (t) = S (t, x (t) , y (t)) for a
known function S (t, x, y) ,

dS (t) =
∂S (t, x, y)

∂x

∣∣∣∣
x=x(t),y=y(t)

σ (t, x (t) , y (t)) dWA (t) .



Local volatility short rate model, cont

I Markovian projection (preserves European swaptions)

dS (t) = η (t,S (t)) dWA (t) ,

η2 (t,S) = EA

((
∂S (t, x (t) , y (t))

∂x

)2

σ2 (t, x (t) , y (t))

∣∣∣∣∣ S (t) = S

)
.

I Let y∗ (t) = EA (y (t)) , ξ (t, s) is the inverse of S (t, x, y∗ (t)) in
x. Then

η2 (t,S) ≈

(
∂S (t, x, y∗ (t))

∂x

∣∣∣∣
x=ξ(t,S)

)
σ (t, ξ (t,S) , y∗ (t)) .

I Local-volatility model for S with a known η. Apply parameter
averaging (on skew and vol), then shifted-lognormal formula
to get option prices.



Stochastic volatility short rate model

I Stochastic-volatility extension: quasi-Gaussian SV

dx (t) = (y (t)− ax (t)) dt +
√

z (t)σ (t, x (t) , y (t)) dW (t) ,
dy (t) =

(
z (t)σ2 (t, x (t) , y (t))− 2ay (t)

)
dt,

dz (t) = θ (1− z (t)) dt + γ (t)
√

z (t) dV (t) .

I Same results (use the same z (·) in (3)), after MP:

dS (t) = η (t,S (t))
√

z (t) dWA (t) ,
dz (t) = θ (1− z (t)) dt + γ (t)

√
z (t) dV (t) .

I Linearize η (t,S) , apply PA on skew, vol, vol of vol.
I See [And05]



Forward Libor model with time-dependent skews

I Ln (t) are spanning forward Libor rates

dLn (t) = ψn (t,Ln (t)) dWTn+1
n (t) , n = 1, . . . ,N− 1.

I Swap rate (S = Sn,m) dynamics

dS (t) =
n+m−1∑

k=n

∂S (t)
∂Lk (t)

ψk (t,Lk (t)) dWA
k (t)

= Σ
(
t, L̄ (t)

)
dWA

n (t) ,

Σ2
(
t, L̄ (t)

)
=

∑
k,k′

∂S (t)
∂Lk (t)

∂S (t)
∂Lk′ (t)

ψk (t,Lk (t))ψk′ (t,Lk′ (t)) ρkk′ .

I By MP

η (t,S) =
(
EA
(
Σ2
(
t, L̄ (t)

)∣∣ S (t) = S
))1/2

≈ EA
(
Σ
(
t, L̄ (t)

)∣∣ S (t) = S
)



Forward Libor model with time-dependent skews,
cont

I Linearize

Σ
(
t, L̄ (t)

)
= Σ

(
t,EAL̄ (t)

)
+
[
∇Σ

(
t,EAL̄ (t)

)]> (
L̄ (t)− EAL̄ (t)

)
I Approximate L̄ (t) ,S (t) with Gaussian processes (use “hats”)

EA
(
L̄ (t)− EAL̄ (t)

∣∣ S (t)
)
≈
〈
L̂ (t) , L̂ (t)

〉−1 〈
L̂ (t) , Ŝ (t)

〉
(S (t)− S (0)) .

I Then

dS (t) = (a (t) + b (t) (S− S (0))) dWA
n (t)

a (t) = Σ
(
t,EAL̄ (t)

)
,

b =
[
∇Σ

(
t,EAL̄ (t)

)]> 〈
L̂ (t) , L̂ (t)

〉−1 〈
L̂ (t) , Ŝ (t)

〉
.

I Shifted lognormal process for S with time-dependent coefs
(skew is the weighted average of Libor skews), apply PA, and
we are done.



Forward Libor model with SV

I Use the same SV process z (·) for all Libor rates

dLn (t) = ψn (t,Ln (t))
√

z (t) dWTn+1
n (t) , n = 1, . . . ,N− 1.

I Same results, get

dS (t) = (a (t) + b (t) (S− S (0)))
√

z (t) dWA
n (t)

dz (t) = θ (1− z (t)) dt + γ (t)
√

z (t) dV (t) .

same a (·) , b (·).
I See [Pit05a]



Interest-rate/FX hybrids

I Interest rates in two currencies + a process for FX

dPd (t,T) /Pd (t,T) = rd (t) dt + σd (t,T) dWd (t) , (14)
dPf (t,T) /Pf (t,T) = rf (t) dt + σf (t,T) dWf (t) ,

dS (t) /S (t) = (rd (t)− rf (t)) dt + γ (t,S (t)) dWS (t) ,

I The “standard” Gaussian framework is recovered by choosing
the function γ (t, x) that is independent of x, γ (t, x) = γ (t).

I FX skew via the local volatility function γ (t, x) .
I Skew very important for FX hybrids, eg PRDC
I Use a parametric form of the local volatility function

γ (t, x) = ν (t)
(

x
L (t)

)β(t)−1

. (15)

I ν (t) is the relative volatility function, β (t) is a
time-dependent constant elasticity of variance parameter and
L (t) is a time-dependent scaling constant (“level”).



Interest-rate/FX hybrids, cont

I Market – options on forward FX, S (T) = F (T,T) ,

F (t,T) = S (t) /D (t,T) , D (t,T) = Pd (t,T) /Pf (t,T) .

I Under domestic T-forward measure,

dF (t,T) /F (t,T) = σf (t,T) dWT
d (t)− σd (t,T) dWT

d (t)
(16)

+ γ (t,F (t,T) D (t,T)) dWT
S (t) .

I Single stochastic driver

dF (t,T) /F (t,T) = Λ (t,F (t,T) D (t,T)) dWF (t) , (17)

where

Λ (t, x) =
(
a (t) + b (t) γ (t, x) + γ2 (t, x)

)1/2
,

a (t) = . . . ,b (t) = . . . .

I If γ (t, x) is a function of time t only, then the
Λ (t,F (t,T) D (t,T)) = Λ (t) is also a deterministic function of
time, and F (T,T) is lognormal



Interest-rate/FX hybrids, cont

I In general case – use MP:

Λ̃2 (t, x) = ET
0

(
Λ2 (t,F (t,T) D (t,T))

∣∣F (t,T) = x
)
.

I Approximate :

Λ̂ (t, x) ≈
(
a (t) + b (t) γ̂ (t, x) + γ̂2 (t, x)

)1/2
,

γ̂ (t, x) = ν (t)
(

x
D0 (t,T)

L (t)

)β(t)−1

×
(

1 + (β (t)− 1) r (t)
(

x
F (0,T)

− 1
))

,

here r(t) is a “regression” coefficient of discount bond ratio to
the forward FX.

I Local volatility model with time-dependent skew, use PA. FX
forward approximately shifted-lognormal. See details in
[Pit06b].



Conclusions

I We have presented a generic method for calibrating models
with smile, consisting of

I Markovian projection, and
I Parameter averaging

I The method can be applied to a wide variety of models:
baskets, spreads, interest rate models, interest rate/FX
models, interest rate/equity models, etc

I While the application of the method can be more, or less,
successful depending on the technical difficulties encountered
on each step, at least we have a plan of attack applicable to
any model
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