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Calibration

» Need fast methods for European options for calibration

» A number of SV models for interest rates and hybrids have
been put forward recently, with various approaches to
calibration

» Many of these approaches can be aggregated into what we call
the Markovian Projection method:

a generic, powerful framework for deriving closed-form
approximations to European option prices

Step 1 Apply Markovian projection to S(-), a technique to
replace a complicated process with a simple one,
preserving European option prices

Step 2 Approximate conditional expected values required

Step 3 Apply parameter averaging techniques to obtain
time-independent coefficients from time-dependent

Step 4 Hopefully a simple model is obtained, use known
results.



The Markovian projection

Theorem (Dupire 97, Gyongy 86) Let X (t) be given by

dX (t) = a(t) dt + S (t) dW (t), (1)
where a (-), B (+) are adapted bounded stochastic

processes such that (1) admits a unique solution.
Define a (t,x), b (t,x) by

a(t,x) = E(a ()| X(t) =x),
b%(t,x) =E (ﬂ2(t |X =x),
Then the SDE
dY (t) =a(t,Y (t)) dt + b (t, Y (t)) dW (t), (2)
Y (0) = X(0),

admits a weak solution Y (t) that has the same
one-dimensional distributions as X (t).

> See [Dup97], [Gy686]
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The Markovian projection, cont

Remark 1

Remark 2

Since X () and Y (+) have the same one-dimensional
distributions, the prices of European options on X (+)
and Y (-) for all strikes K and expiries T will be the
same. Thus, for the purposes of European option
valuation and/or calibration to European options, we
can replace a potentially very complicated process

X (+) with a much simpler Markov process Y (),
which we call the Markovian projection of X ().

The process Y (-) follows what is known as a “local
volatility” process. The function b (t,x) is often
called “Dupire’s local volatility”



\f}’ )

The Markovian projection, cont

» If X (+) itself came from a local volatility model (perhaps
complicated), then replacing it with a (simpler) local vol
model is probably the right thing to do. But:

» Any process (including a stochastic volatility one) can be
replaced by a local volatility process for the purposes of
European option valuation. Is it a good idea?

» Requires calculations of conditional expected values. This is
the hard bit. Approximations often necessary

» In approximations, better to replace “like for like”. Replace a
(complicated) SV model with a (simpler) SV model.

» Approximations to conditional expected values may be simpler
» Errors of approximations will tend to “cancel out”
» Dupire-Gyongy theorem still works

Corollary If two processes have the same Dupire’s local
volatility, the European option prices on both are the
same for all strikes and expiries



\f}’ )

The Markovian projection for SV
» Let X (t) follow
Xm( ) b1 t Xl \/Cl dW (t

where (; (t) is some variance process.
» We would like to match the European option prices on X; (+)
(for all expiries and strikes) in a model of the form

dXs (t) = bz (8, X2 (1)) v/¢2 (t) AW (t)
where (s (t) is a different, and potentially simpler, variance
process.
» Then the Corollary and the Theorem imply that we need to

set
2 2 E (G (8)] X4 () =x)
P (1) =D B G 01K () =)
» Error cancellation — whatever approximations are used for
conditional expected values in (3), hopefully they will tend to
cancel when we take the ratio

3)



Simple SV model

>

After applying the MP method, often get the SDEs of the
form

dz(t) = 6(1—z(t)) dt+~(t) Vz(t)dV(t), (4)

ds(t) = (B(t)S(t)+ (1 —pB(t)) ) (t) vz (t) AW (t)
Or, rather, we apply the MP method with the goal of
obtaining the SDEs in this form

» Choose z to be the square root process

» Linearize the volatility term of S
Why? When parameters are constant, this is the (shifted)
Heston model, a model with very efficient numerical methods
for European option valuation, see [AA02].
How to replace time-dependent parameters with constant?
Parameter averaging. Proofs and details in [Pit05b], [Pit05a]
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Example of averaging formula

» For motivation, consider a log-normal model with
time-dependent volatility,

dS(t) = o (£) S (t) dW (t).

» It is known that, an option value with expiry T, in this model
is equal to the Black-Scholes option value with “effective”

volatility
1 [T,
= (= t) dt
e (4 [ 0)

» Calibration by solving the following equations

1/2

Th
/ o?(t) dt = 62Ty, n=1,...,N.
0

Linear in o2 (t), trivial to solve.
» Direct link between “model” parameter o (t) and “market”
parameters (oy,)
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Averaging volatility of variance

[S fo ) dt is ‘realized variance”

> Curvature of the smile depends on the variance of realized
variance (kurtosis, 4-th moment)

» Averaged vol of variance i (to T) is obtained by solving

E</0Ta2(t)z(t) dt)

where

2

:E(/OTJ2(t)Z(t) dt) ;

dz(t) = 6(1—2z(t)) dt+~(t) V2 dV
dZ(t) = 6(1—z(t)) dt+nvE( dV

2
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Averaging skew

» Fixed T, vol of variance already averaged (use constant 7)

» Time-dependent skew
dS(t) = o (t) (B(£)S(t) + (L = B(t))S(0)) vz (t) dW (%),
» Constant skew
dS(t) = o (t) (bs (t)+(1-b)S (O)) V7 (t) dW (t).

» Given f((-), find b such that option prices for different strikes
(same expiry T) are matched between two models
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Averaging skew, cont

» The main result. In the “small skew” limit,

T
bz/O B(8)w (1) dt,

where
v2 (t) o2 (t) ’
JiEv2 () o2 (t) dt

vi(t) = E(z(t)(So(t)—x0)2>.

w(t) =

» Comments:

» “Total skew” b is the average of “local skews” [ (t) with
weights w (t)

» Weights proportional to total variance, i.e. local slope further
away matters more

» Example: No SV (n = 0), constant volatility o (t) = o,

b= (T?/2)"" /OT £3(t) dt.



Averaging volatility

» Approximate the dynamics of

dS (t) = o (t) (bS (t) + (1 — b) S (0)) /2 (t) AW (t)

with

dS (t) = A (b8 () + (1 — b) S (0)) v/z (t) AW (t) .

» Can do numerically as in [Lew00], [AA02]: Do Fourier integral
with integrand a solution to Riccati ODEs. Slow.
» Can use moment-matching

= 2 T
E(S(T)-So)*=E (5(T) - S0)", /0 o? (t)dt = \2T.

Not always accurate

» Better: approximate a European option payoff locally with a
function whose expectation can be computed in both models
above; choose A to match the two.



Averaging volatility, cont

» By conditioning on the realized variance

E(S(T) - So)* = Eg </0T02(t)z(t) dt>,

where g is a known function.
» Approximate
g(x) =~ a+be ™

by matching the value and first two derivatives at

T
g=E/0 o2 (t) 2 (t) dt

» The problem reduced to finding A such that

E exp <gg”((§)) /O o2 ()4 (t) dt) — Eexp </\2 gg"((f_)) /O L) dt> .

» Very fast and easy numerical search for A\ (starting with a

good initial guess A\? = T~! OT o? (t) dt).
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Direct calibration to market

» In equity /FX: Let ok (T, K) be market volatilities for all
expiries T and strikes K (assumed known). Given an
exogenous SV process z(t), find b (t,x) such that the model

dS(t) = b (£, S (t)) vz(t) dW (t), S(0) = So,

matches the market
» Define Dupire’s market local volatility bkt (t,%) by the
requirement that the local volatility model with byt (t, %)
matches the whole market. Easy to compute
20C/ 0t
02C/0x2"

» Then, from Theorem and Corollary,

bmkt (t7 X) —

b2 . (t,%)
b2 (t, X) _ mkt \ ™ . (5)
E(z(t)[S(t) =x)
» In practice E (z(t)|S (t) = x) is often computed numerically in
a forward PDE in (S,z). Slow and noisy.
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Direct calibration to market, cont

» Define a “proxy” process X (t) by

dX (t) = b (t, X (t)) V2 (t) dW (t), X(0)=So,  (6)
where b (t,x) is such that European options on X are easy to
compute

» Define the “proxy” Dupire’s local volatility bproxy (t,x) as
before but for European options on X (not on market). Then

2 X
E(2(§)]X () = x) = oo (63, ™

b2 (t,x)
thus having a stochastic volatility model with
cheaply-computable European option prices allows us to
compute the conditional expected values easily.
» Combining the two results we get

_ bk (6,%) (B (2 (6)| X (t) = %)\ /"
b(t,x) =b(t,x) x bproiy (i) X (E(Z(t)|S(t) :X)> '
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Direct calibration to market, cont

» Choice 1: Approximate
E(z(t)] X(t) =x) = E(2(t)[S(t) = x)
» Choice 2: Link S(t) and X(t).
» Define H (t,s) by the requirement that H(t,S(t)) has the same
dW term as dX (H a function of b, b)
» Then approximate

%

X (t)
E(z(t)[S(t) =x)

» Functional equation on b,

H(t,5(t)),
E(2(t)| X (t) = H(t,x)).

%

bkaE (t, X)

bPFOXy (t7 H (t7 X)) .

» Last derivation is an example of a clever way of computing
conditional expectations

» Original result due to Forde ([For06]). More details in
[Pit06a].

b (t,x) = b (¢, H(t,x))

(8)
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Basket modeling

» Consider a “simple” local volatility model for a basket

S(t) =2 wiSi(t),
dS; (t) = wi (Si (t)) dWi(t), i=1,...,L
» Options on index S(-). Apply MP to write SDE for S. Start

dS(t) = o(t) dW(t),

N
o (t) = Z Wi Wim@n (Sn (t)) m (Sm (t)) pnm-
n,m=1
» Then
dS(t) = ¢(t,S(t)) AW (t)
902 (t,x)

|
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Basket modeling, cont
» To compute E (02 (t)| S (t)) use Gaussian approximation
Sy a8, S &8,
dS;(t) = pidW;(t), dS(t)=c(0)dW (t),

N
bi = @i (Si (0))7 U(O) — Z WnWmPnPmPnm,

n,m=1

and linearization

pi(x) =pi+qi(x=5(0), a=i(Si(0)).

» Then
E (Su (t) — 54 (0)] S (t) = %) :pn%“ x —$(0)),
N
pn & (AW (t), AW, (1)) /dt = 11> S WonDun
m=1

» See more in [Pit06a]. More accurate method in [ABOBF02].
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Spread options in SV model

| 2

For spread options, important to use different SV process for
each variable (see [Pit06¢]),

aSi(t) = o (5i() Va®dwi), i=1.2,
dzi (t) = 6(1—z(t)) dt+niv/z () dWayi (t), 2 (0) =1,
with the correlations given by
(dWi (t) ,dW; (t)) = py 1,j=1,...,4.

Denote

pi =i (Si(0), a={(Si(0)).
Write down dS (+) for spread S =S; — Sy
Identify a suitable “spread variance” process z (-)
Compute the skew function ¢ (+) of the spread using the

Markovian projection ideas above
“Massage” z(-) into the Heston form



Process for the spread

» We have
ds; (t) = Si (t)) vz (t) dW; (

» S =851 —So, then dS (t )— (t) dW (t ),Where

o2 (t) = (1 (S1(t))u (t))?
=2 (1 (S1(t)) wa (t)) (w2 (S2 (t)) uz (t)) p12

T (2 (S2 (1) u2 (1)),
AW () = e (1 (81 () () AW (1)
—p2 (S2 (t)) uz (t) dW2 (t)),
ui (t) = zi (t), i=1,2.
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Process for the variance of the spread

| 2

Try to find a stochastic volatility process z(-) such that the
curvature of the smile of the spread S (-) is explained by it,
and the local volatility function is only used to induce the
volatility skew

To identify a suitable candidate for z(+), consider what the
expression for o2 (t) would be if ¢; (x), i = 1,2, were constant
functions.

In this case, the expression for o2 (t) above would not involve
the processes S; (-), 1= 1,2 and this is a good candidate for
the stochastic variance process.

We define (the division by o2 (0) is to preserve the scaling
z(0)=1)

2(0) = = ((prus (9)° = 2papans (6 () pro + (poua (0)°)
9

1/2
p=0(0) = (p? — 2p1p2p12 +p2) "> (10)

where
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Skew function of the spread

» By Corollary,

= _E(O’Q(t)’S(t):X)
P = B LIS =2 (1

» The expression for E (o2 (t)’ S(t) =x) is a linear
combinations of the conditional expected values of the terms

i (Si (1) @3 (55 (1)) wi (8) uj (¢)
» Approximate to the first order by
. diq(1)_g 9 (g (1) — s
PiP; (1 + o (Si(t) —Si(0)) + o (S; (t) —S;(0)) +. ) :

» Use Gaussian approximation to compute conditional expected
values



Gaussian approximation
» Use X to denote a Gaussian approximation to X for a generic
X, then
E(Si(t) —Si(0)]S(t) =x) E(Si(t)—gi(O)‘S(t):x)
E (ui (t) — 1|5 (t) = x) B (% (t) - 1/S(t) =x),

» Here (we ignore dt terms for du, although they may be
included for more accurate approximations)

Q

Q

dSi(t) = pidWi(t), dS(t)=pdW(t), (12)
d (t) = %dw}i—i(t)’ dV_V(t):%(pldwl(t)—P2dW2(t))~
» Then

E(Si(t) -5 (0)[S(t) =x) = p;pi (x—8(0)),

E (G (t) — 1/5(t) =x) = "ig;“ (x—$(0)),
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Skew function of the spread

» Combining the results, we get the following approximation to
the spread dynamics,

dS (t) = ¢ (S (t)) V= (t) dW (t),

» Here ¢ (x) is a function of the same type as ¢; (x) (linear or
CEV) with
¢(S(0)=p, ¢ (S(0)=aq,

where

)1/2

p = (P%—-2p1p2pl2+-P%
1
5 (p1pia1 — P2r3de) -
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Variance process for the spread

» The process for S is in a nice form. But z is not:

1
() = 5 (bt () ~ 201p2/2 (O (Vo2 + P2 (1))
» Compute dz,

dz(t) = 01 (t) dt + 2 (t) dt + I3 (t) dt
+&1 (8) dW3 () + &2 (t) dW4 (t),

» dW terms
P2 P2
a(t) = n1§<\/21(t)—p1012\/Z2(t)>,
2
Q) = mi2 <\/Zz(t)—iimz\/21(t)>-
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Variance process for the spread, cont

» dt terms
_ (i m, [a@)
o (t) = 9p2 (1 b, P12 zl(t)>(1 1(t)),
p D1 z1 (t)
& (t) = 3(1 — 2\/22@))(1_22“))

d3(t) = p1p2p12 (\/ Z Et nt — 2mmn2psa + \/ 12 > :

» Complicated expression, Not “closed” in z (+)
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Variance process for the spread, cont

» The curvature of the volatility smile (of options on S(-)) is
driven by the variance of the stochastic variance

» It is preserved under the Markovian projection of z(-) so can
apply the Theorem again, now to the process for z (-)!

» Formulas getting unwieldy: need to compute conditional
expected values of the type E (/% (t) z; (t)} z(t) =x) and
E (/7 (t) /z; (t)| z (t) = x) , for which we would apply the

Gaussian approximations
» Try something simpler:

» replace \/71 (t), /22 (t) in the dW terms with /z (t);

Zg(t) Z1 (t)
z1(t)7 '\ z2(t)

> 01 (t) + 02 (t) becomes 0 (1 —z),

» replace in dt terms with 1.



Variance process for the spread, simple
approximation

» J3(t) becomes

v £ plf;;f” (nf — 2mmapza + 03) - (13)
» The dW terms can be re-written as 7v/z (t) dB (t) , where
7= 1% (um1p1)” = 2 (prmpr) (anep2) paa + (p22p2)’ )
AB(1) = (pumpr dWs (1) = panapa dWa (1).

» Altogether
dS(t) = @ (S(t)) vz (t) dW(t
dz(t) = 9(1+§—z )dt+n\/ £)dB (¢

» Linearize ¢ and apply Heston valuation formula to options on
the spread S!
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Local volatility short rate model

» Simplest interest rate model: one-factor Gaussian
(“Hull-White”)

r(t) =£(0,t)+x(t), dx(t)=(6(t)—ax(t)) dt+o(t) dW (t).
» Local-volatility extension: quasi-Gaussian (“Cheyette”)

dx(t) = (y(t) —ax(t)) dt + o (t,x(t),y (t)) AW (t),
dy(t) = (o?(t,x(t),y(t)) — 2ay (t)) dt.

» Swap rate (under swap measure), S (t) = S (t,x(t),y(t)) for a
known function S (t,x,y),

_0S(t,x,y)

= o (t,x(t),y (t)) dWA (t).

x=x(t),y=y(t)

ds (t)



Local volatility short rate model, cont

» Markovian projection (preserves European swaptions)
ds(t) = n(t,S(t)) AW (t),
S (t,x t Ly ()2
2 (6,8) = (( e ”) o (6% (1), (1)) S(t)=S>

> Let y* (t) = EA (y (t)), & (t,s) is the inverse of S (t,x, y* (t)) in
x. Then

772 (t, S) ~ ( 95 (ta X, y* (t))

o (t,€(t,5),y" (t)) .

2 —(t S))

» Local-volatility model for S with a known 7. Apply parameter
averaging (on skew and vol), then shifted-lognormal formula
to get option prices.



Stochastic volatility short rate model

» Stochastic-volatility extension: quasi-Gaussian SV

dx(t) = (v (t) —ax(t)) dt + /2 (0)o (6, % (t),y (t)) dW (¢),
dy (t) = (z(t)o® (t,x(t),y(t)) — 2ay()) dt,
dz(t) = 0(1—z(t )dt—i—v £) /2 (t) dV (¢

» Same results (use the same z(-) in (3)), after MP:
ds(t) = n(tS(t) Vz(t)dw (t)
dz(t) = 6(1—2z(t)) dt+~v(t)Vz(t)dV (¢t

» Linearize 7 (t,S), apply PA on skew, vol, vol of vol.
> See [And05]



Forward Libor model with time-dependent skews

» L, (t) are spanning forward Libor rates
dLy (t) = 9y (£, Ly (t)) dWInt1 (£), n=1

» Swap rate (S = S, m) dynamics

N-1.

g ey

n+m-—1 oS (t)
— OLk (t)

(6 L(t) dWA OF

PHLO) = 3 S T (6 L (1) e (6 e (1) e

as(t) = Vi (t, Lic () dW3 (t)

» By MP

n (t,S)

I
—~
=

>
—
™M
(V]
—~
\.C"
=
—~~
-
~—
~—
5]
—~
-+



Forward Libor model with time-dependent skews,
cont
» Linearize

T (t,L(t)) = X (6, EAL (£))+ [VE (6, AL (1))] " (L (t) — EAL ()

» Approximate L (t),S (t) with Gaussian processes (use “hats”)

EA (L (t) — EAL (1) S (1) ~ <£ (t),L (t)>_1 <13 (t),8 (t)> (S(t) — S|
» Then
ds(t) = (a(t)+b(t)(S—S(0))) dWy (t)
a(t) = X (t,EAL(t)),
b= [VEREML )] (L0).LO) (L0).50).
» Shifted lognormal process for S with time-dependent coefs

(skew is the weighted average of Libor skews), apply PA, and
we are done.



Forward Libor model with SV

» Use the same SV process z (-) for all Libor rates

dLy (t) = ¥ (t, L (£)) V2 (£) AW+ (t), n=1,...,N—1.
» Same results, get
dS(t) = (a(t)+b(t)(S—S(0))) vz(t) AWy (t)
dz(t) = 0(1—2z(t)) dt+v(t)Vz(t)dV (t).

same a (), b(:).
» See [Pit05a]
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Interest-rate/FX hybrids

» Interest rates in two currencies + a process for FX
dPq (t,T) /Pa(t,T) = ra(t) dt+oa(t,T) dWq(t), (14)
dPs (¢, T) /P (¢, T) = 1e(t) dt + o¢ (¢, T) dWe (t),
dS(t) /S(t) = (ra(t) —re(t)) dt +(t,5(t)) dWs (t),
» The “standard” Gaussian framework is recovered by choosing
the function 7 (t,x) that is independent of x, v (t,x) = 7 (t).
» FX skew via the local volatility function ~ (t,x).

Skew very important for FX hybrids, eg PRDC
» Use a parametric form of the local volatility function

L BB
e (L(t)) . (15)

» v (t) is the relative volatility function, 5 (t) is a

time-dependent constant elasticity of variance parameter and
L (t) is a time-dependent scaling constant (“level”).

\{



Interest-rate/FX hybrids, cont

» Market — options on forward FX, S(T) =F (T, T),
F(t,T)=S(t)/D(t,T), D(t,T)=Pq(t,T)/Ps(t,T).

» Under domestic T-forward measure,
dF (t,T) /F (t, T) = ot (t, T) dW3 (t) — oq (t, T) dW] (t)

(16)
+7(6,F (t, T)D(t,T)) dWS (t).

» Single stochastic driver

dF (t,T) /F (t,T) =A(t,F(t,T)D(t, T)) dWp (t), (17)

where

At,x) = (a(t)+b()7(tx) +42 ()",

a(t) = ...,b(t)=....
» If v (t,x) is a function of time t only, then the
A(tF(t, T)D(t,T)) = A(t) is also a deterministic function of
time, and F (T, T) is lognormal
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Interest-rate/FX hybrids, cont

» In general case — use MP:
A (t,x) = E§ (A?(t,F (t, T)D (t,T))| F (t,T) = x) .
» Approximate :

At x) ~ (a(t)+b(6)4(tx) +42(t,x) ",

B(t)—1
S = (x%)

x <1+(ﬁ(t)—1)r(t) (ﬁ _1>>’

here r(t) is a “regression” coefficient of discount bond ratio to
the forward FX.

» Local volatility model with time-dependent skew, use PA. FX
forward approximately shifted-lognormal. See details in
[Pit06D].



Conclusions

» We have presented a generic method for calibrating models
with smile, consisting of

» Markovian projection, and
» Parameter averaging

» The method can be applied to a wide variety of models:
baskets, spreads, interest rate models, interest rate/FX
models, interest rate/equity models, etc

» While the application of the method can be more, or less,
successful depending on the technical difficulties encountered
on each step, at least we have a plan of attack applicable to
any model
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