
Robust Invest Literature Model Deterministic Rectangularity Stochastic Divergences BB Conclusion References

Rectangular and Coherent Sets of Indistinguishable
Models

Anne G. Balter & Antoon Pelsser

Winter School Mathematical Finance
Lunteren, The Netherlands

23 January, 2017

Anne G. Balter Sets of Indistinguishable Models



Robust Invest Literature Model Deterministic Rectangularity Stochastic Divergences BB Conclusion References

Outline

Application I: Robust Investment

Literature

Model

Deterministic
Rectangularity
Stochastic

Application II: Bang-Bang control

Conclusion

References

Anne G. Balter Sets of Indistinguishable Models



Robust Invest Literature Model Deterministic Rectangularity Stochastic Divergences BB Conclusion References

Objective

Robustness

Set of alternative models

Optimisation

Research on quantification of uncertainty

Characteristics of indistinguishable set
Link with Type I and II error, test horizon
All deviations |λ(t, ω)| ≤ 2.48√

T
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Robust Investment

Merton (1969): Agent generates utility from terminal wealth

max
π

min
L∈L

E
L[u(X (T ))]

Allocate π to risky asset S with

dSt = µStdt + σSt (dWt + λdt)

Rest on bank account B with riskfree rate r

Equity premium puzzle

Robust optimal investment strategy subject to λ2 ≤ k2

π∗ = max

(
µ− r − σk

γσ2
, 0

)
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Strategies

Table: Robust Optimal Investments

γ \ T 1 100 200 π∗M
0.1 0% 12.5% 466.5% 1562.5%
0.2 0% 6.25% 233.2% 781.25%
0.5 0% 2.5% 93.3% 312.5%
1 0% 1.25% 46.65% 156.25%
3 0% 0.42% 15.55% 52.1%
5 0% 0.25% 9.33% 31.25%

The optimal robust investment strategy by the addition
of a constraint is shown, π∗C for several values of T =
{1, 100, 200} with k = 2.48√

T . The last column shows the
classical Merton solution without model uncertainty.
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Literature Uncertainty

Risk versus uncertainty

The Ellsberg paradox (Ellsberg, 1961)

Bayesian prior, posterior (Thomas Bayes, 1701 1761)

Multiple prior model from Gilboa and Schmeidler (1989)

Extension of the standard multiple prior approach Garlappi et al.
(2007)
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Literature Uncertainty

Robustness: Hansen, Sargent and Tallarini (1999); Hansen, Sargent
and Turmuhambetova (2006); Hansen, Sargent and Wang (2002);
Hansen and Sargent (2008); Hansen and Sargent (2015)

φ-Divergence: Ben-Tal, Den Hertog, De Waegenaere, Melenberg and
Rennen (2013)

Model Confidence Set: Hansen, Lunde and Nason (2011)

Confidence Interval for Parameters
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Literature Uncertainty
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Figure: Overview of Uncertainty Sets
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Literature Uncertainty
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Motivation

Goal: we would like to identify and characterise the set of alternative
models ex ante

Independent from objective problem

Consider a large class of alternatives

Statistically indistinguishable models:

Based on Type I and II error and test horizon

Outline

Model
Stochastic example
Deterministic
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Model

SDEs of form
dX = µ(t, ω) dt + σ(t, ω) dW (t)

Possible alternative models dWt + λ(t, ω) dt

Ex ante (t = 0)

Those λ(t, ω) indistinguishable from λ = 0

dWt + λ(t, ω)dt not only adjusting the mean of the probability
distribution

Stochastic example
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Stochastic Example

Mean repelling process: λ(t, ω) = a tanh(aW (t))

Alternative fatter tails

Let

: (T ) = 1
2

(
e−

1
2a

2T +aW (T ) + e−
1
2a

2T −aW (T )

)
Under L1 a mixture of N(aT , T ) and N(−aT , T ), together not
normal, mean 0 and variance T + (aT )2

Under P always W (T ) ∼ N(0, T )

1P and L stand for baseline and alternative.
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Model (2)

Test H0 : P versus HA : L
Hence, L(T ) equals the likelihood ratio test statistic

Radon-Nikodym derivative (Girsanov)

L(T ) = exp

{
−1

2

∫ T
0
λ(t, ω)2dt +

∫ T
0
λ(t, ω)dW P(t, ω)

}
Value L(T , ω) determined by realisation ω

Test if model P should be rejected in favour of model L
Two simple hypotheses, Neyman-Pearson Lemma most powerful test
is likelihood ratio test
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Model (3)

Type I error: incorrectly rejecting model P

P[L(T ) ≥ γ] = α

Type II error: incorrectly rejecting model L

L[L(T ) < γ] = β

Power: probability of accepting model L
when model L is the true model

L[L(T ) ≥ γ] = 1− β
= EP [L(T )1(L(T ) ≥ γ)]
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Deterministic

Radon-Nikodym, without ω, log normal

E.g. α = 0.05, then Φ−1(α) = −1.64

If we take β = 0.20 then power is 0.80 and we have Φ−1(0.80) = 0.84

Hence, the class of all indistinguishable models is then given by all
models that satisfy(∫ T

0
λ(t)2 dt

) 1
2

≤ 0.84− (−1.64) = 2.48
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T

Future moment in time at which test would hypothetically be
performed

Extra amount of data that one would take into consideration

Time period during which model would remain the same
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Rectangularity

Rectangularity ⇔ time-consistency ⇔ m-stability ⇔ BSDEs

Power ⇔ CVaR ⇔ Coherent risk measure

For time-consistent coherent risk measures (Barrieu and El Karoui
(2007))

|λ(t, ω)| ≤ k

Optimal solution at any time-point t does not depend on history
between [0, t]

Optimal policy devised at time 0 for t > 0 is still valid at time t given
information Ft

Intersect classes
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Optimisation

Recall

L(T ) = exp

{
−1

2

∫ T
0
λ(t, ω)2dt +

∫ T
0
λ(t, ω)dW P(t, ω)

}
Optimisation problem

max
γ,|λ(t,ω)|≤k

E [L(T )1(L(T ) ≥ γ)] (MP)

s.t. E [1(L(T ) ≥ γ)] = α

dL = λ(t, ω)LdW , L0 = 1

Maximum for |λ(t, ω)| ≡ k ⇒ log Normal
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Stochastic

Given that the optimal L∗(T ) is a lognormal martingale with volatility
k

The optimised power at time t = 0 and L(0) = 1 is therefore equal to

E
[
L∗(T )1

(
L∗(T ) > γ∗

)]
= L [L∗(T ) > γ∗] = Φ

(
Φ−1(α) + k

√
T
)

Set of indistinguishable models |λ(t, ω)∗| ≤ k = 2.48/
√
T
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Theorem (Rectangular and Coherent Sets of Indistinguishable Models)

Consider a baseline model dX (t) = µ(t, ω)dt + σ(t, ω)dW (t). The set of
all models with dW (t) + λ(t, ω)dt and |λ(t, ω)| ≤ k is rectangular and
coherent, where

k =
Φ−1(1− β)− Φ−1(α)√

T
(1)

forms an indistinguishable set for a Type I error of α, a Type II error of β
and a test horizon T .
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Bounds on Divergences

φ-Divergences/f -Divergences (non-symmetric distance measures)

Robust results in optimisation problems

Continuous φ-divergence

Dφ(L(T , ω)) = E
L

[
φ

(
1

L(T )

)]
= E

P

[
L(T )φ

(
1

L(T )

)]
For each measure φ(·) given and convex

Size of the uncertainty quantified by c

Dφ(L(T , ω)) ≤ c

The divergences are expressed in terms of the ratio x = 1
L(T ,ω) under

the measure L
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Bounds on Divergences

Divergence φ(x) c ⇔ |λ(t, ω)| ≡ k k
√
T = 2.48

Kullback-Leibler x ln x − x + 1 1
2k

2T 3.08
Burg entropy − ln x + x − 1 1

2k
2T 3.08

J-divergence (x − 1) ln x k2T 6.15

χ2-divergence 1
x (x − 1)2 ek

2T − 1 467.90

Modified χ2-divergence (x − 1)2 ek
2T − 1 467.90

Hellinger distance (
√
x − 1)2 2− 2e−

1
8 k2T 1.07

Variation distance |x − 1| 4N( 1
2k
√
T )− 2 1.57

χ-divergence of order ϑ > 1 |x − 1|ϑ numerical Table 2

Cressie-Read ϑ 6= 0, 1 1−ϑ+ϑx−xϑ

ϑ(1−ϑ) expr Table 2
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Bounds on Divergences

Divergence �ϑ 1.5 2.0 2.5 3.0
χ-divergence of order ϑ 10.40 467.90 1.02 ×106 1.03 ×108

Cressie-Read 12.05 233.95 2.72×104 1.72 ×107
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Bang-Bang

Baseline model: Brownian motion

Stochastic deviation λ(t, ω) = a · sgn (W (t, ω))

a > 0

Mean repelling process
Increase the variance of X (T ) under model L

a < 0

mean reverting process
Decrease the variance of X (T ) under model L
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Bang-Bang

Under P

dX (t) = dW (t)
Model X normal distributed

Under L

dX (t) = a · sgn(X (t))dt + dW (t)
Model X unknown distribution and variance changed

Distribution

ln L(T ) ∼P N
(
− 1

2a
2T , a2T

)
ln L(T ) ∼L N

(
1
2a

2T , a2T
)

Explicit bound |a| ≤ Φ−1(β)−Φ−1(1−α)√
T

Does satisfy rectangular and coherence axioms
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BB
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Conclusion

Quantify uncertainty

Most powerful test

Ex ante

For given size and power

Stochastic deviation from the drift
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