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What this course is about

» Polynomial models provide an analytically tractable and
statistically flexible framework for financial modeling

» New factor process dynamics, beyond affine, enter the scene
> Definition of polynomial jump-diffusions and basic properties
» Existence and building blocks

» Polynomial models in finance: option pricing, portfolio choice,
risk management, economic scenario generation,..

» Examples: stochastic volatility, interest rates, credit risk



Course Outline

Part | Definition and Basic Properties
Part Il Existence and Building Blocks
Part Il Financial Modeling
Part IV Stochastic Volatility Models
Part V Interest Rate and Credit Risk Models



Some Literature

» Polynomial processes: [Wong, 1964], [Mazet, 1997],
[Forman and Sgrensen, 2008],[Cuchiero, 2011],
[Cuchiero et al., 2012], [Filipovi¢ and Larsson, 2016], and
others

» Polynomial models in finance: [Zhou, 2003],
[Delbaen and Shirakawa, 2002], [Larsen and Sgrensen, 2007],
[Gouriéroux and Jasiak, 2006], [Eriksson and Pistorius, 2011],
[Filipovi¢ et al., 2016], [Filipovi¢ et al., 2014],
[Ackerer and Filipovi¢, 2015], [Ackerer et al., 2015],
[Filipovi¢ and Larsson, 2017], and others

This course is based on the highlighted papers. Most results in
Parts |11l are from [Filipovi¢ and Larsson, 2017].
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Setup

» Filtered probability space (Q, F, F;,P)
» State space E C RY
» E-valued jump-diffusion X; with extended generator given by

Gf(x) = %tr(a(x)vzf(x)) + b(x) V(%)
+ /R (Fle+ ) = F0) = €79F () w(x, de)

for measurable a: R - S9 b:RY - RY and Lévy
transition kernel v(x, d¢) from R? into R? with

Jaa IEN A NEIPv(x, dE) < 00



Definition of Jump-Diffusion

» That is, X; is E-valued special semimartingale, such that
t
Mhﬂ&pmm—/mmmsmmmmmwe
0

for any bounded C? function f(x), [Jacod and Shiryaev, 2003,
Thm 11.2.42]

P> Note: this holds for any C? function f(x) such that, for any finite t,
f T
L[ 105 + 0 = r06) — €7 9706) | v, de) s < oo

Indeed, then the term is in .AIJ;C

, see [Jacod and Shiryaev, 2003, Thm 11.1.8 and proof of Thm 11.2.42]



Polynomials on E

» Polynomial on E: restriction p = g|g of a polynomial g on R?

v

Degree deg p = min{deg q : p = q|g, g polynomial on ]Rd}

v

Space of polynomials of degree n or less
Pol,(E) = {p polynomial on E with degp < n}

has dim Pol,(E) < ("t) with equality if int(E) # 0

Ring of polynomials

v

Pol(E) = Up>1Pol,(E)

Multi-index notation

v

d
k:(kl,---,kd)eNg7 Xk:X]/_q“'ng7 |k|:Zk,'
i=1



Definition of Polynomial Jump-Diffusion (PJD)

Definition 1.1.
G is well-defined on Pol(E) if

1. Jump measure of X; admits moments of all orders,
Jra llENI" v(x, d§) < oo forall x € E and n > 2;

2. Gf(x) =0 on E for any f € Pol(RY) with f(x) =0 on E.

Definition 1.2.
G is polynomial on E if it is well-defined on Pol(E) and

GPol,(E) C Pol,(E) for all n € N.

In this case, we call X; a polynomial jump-diffusion (PJD) on E.

Polynomial Jump-Diffusions
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Example

» State space E =R x {0}, d =2

» The partial differential operator

1
Gf(x,y) = 50uf(x, y) + Oy f(x.y)
is not well-defined on Pol(E): y vanishes on E but Gy =1

» Note G is generator of dX; = (dB, dt), which leaves E

» Positive maximum principle implies: G is well-defined on E if
for any Xo = x in E there exists E-valued jump-diffusion X;
with generator G, see [Filipovi¢ and Larsson, 2016,

Lemma 2.3].



Characterization of Polynomial Jump-Diffusions

Lemma 1.3.
Assume G is well-defined on Pol(E). The following are equivalent:

1. G is polynomial on E.
2. a(x), b(x), and v(x, d§) satisfy

bi(x) € Poli(E), drift
ajj(x) + / &i&jv(x, d§) € Poly(E), modified 2nd characteristic
Rm
£%v(x, d§) € Polig(E),  jumps
RITI
foralli,j=1,...,d and all || > 3.

In this case, the polynomials on E listed in property 2 are uniquely
determined by the action of G on Pol(E).



Characterization of Polynomial Jump-Diffusions

Proof.

Plug in polynomials p in Gp and collect and match terms ...

Polynomial Jump-Diffusions

O



Properties of Polynomial Jump-Diffusions
Let X; be a PJD with generator G on E.

Lemma 1.4.
For any f € Pol(E) the process

ME = F(Xe) — F(X0) — /0 "GF(x.) ds

is a local martingale.

Sketch of proof.
Lemma 1.3 implies that

/Rd (f(x +&) — f(x) - €TVf(x)>2 v(x, d¢) € Pol(E).

NV
minimal degree > 4

The lemma follows from [Jacod and Shiryaev, 2003, Thm 11.1.33
and proof of Thm 11.2.42].



Properties of Polynomial Jump-Diffusions cont'd

Lemma 1.5.
For any k € N there exists a finite Cy such that

E[L+ X2 | Fol < (1+ X)) %, £> 0.

Sketch of proof.

Using arguments from [Cuchiero et al., 2012, Thm 2.10] or
[Filipovi¢ and Larsson, 2016, Lemma B.1].



Properties of Polynomial Jump-Diffusions cont'd

Lemma 1.6.
For any f € Pol(E) and finite ¢ the process Mtfl{”XOHSC} is a
martingale.

Sketch of proof.
The compensator of quadratic variation of I\/I[ is given by

(M M) = (000 = | (L F)(X) ds

and I'(f, f) € Pol(E), for the carré-du-champ operator I'. The
lemma follows from Lemmas 1.4 and 1.5. O



Carré-du-Champ Operator
The carré-du-champ operator '(f, g) is defined by

M(f,g)(x) = G(fg)(x) — f(x)9g(x) — g(x)Gf(x)
= Vf(x)"a(x)Veg(x)

" / (F(x +€) — FOO)glx + &) — g())(x, dE).
]Rd

It is related to the co-variation of f(X) and g(X),

[F(X), g(X)]e = /0 VF(Xe) T a(Xe) Vg (Xe) ds

+ Z(f(Xs) - f(Xs—))(g(Xs) - g(Xs—))7

s<t

and its compensator by



Towards the Moment Transform Formula

v

Let G be polynomial on E

Fix n € N, denote 1 + N = dim Pol,(E) < ("td) < oo
G restricts to linear operator on Pol,(E)

Fix a basis 1, h1(x), ..., hy(x) of Pol,(E), denote

H(x) = (hi(x), ..., hn(x))

Coordinate representation p of p € Pol,(E):
p(x) = (1, H(x))p

Matrix representation G of G: G(1, H(x)) = (1, H(x))G

gp(x) = (1, H(x))Gp

v

v

v

v

v



Moment Transform Formula

Theorem 1.7.
For any p € Pol,(E) we have that

E[p(X7) | Fe] = (1, H(Xp)eT-9¢p

is a polynomial in X; of degree < n, for all T > t.



Moment Transform Formula: Proof

Sketch of proof.
Fix finite ¢ and write A = {||Xo|| < ¢}. By Lemma 1.6, the
function F(s) = E[(1, H(X;))1a | F¢] satisfies
F(s) = (1,H(X:))1a +/ E[G(1,H(Xu))1a | Ft] du
t
= F(t) +/ F(u)G du,
t

thus E[(1, H(XT))1a | Ft] = (1, H(Xt))e(T_t)GlA-
Now let ¢ 1 oc.



Example: Scalar Polynomial Diffusions

» Generic scalar polynomial diffusion on interval E C R

dX; = (b+ BX;) dt + \/a + aX; + AXZ dW;

» Basis {1,x,x?,---,x"} of Pol,(E)

» Coordinate representation of p(x) = Y"7_, pxxk:

B= (o, pn)|

» Matrix representation of G: (n+ 1) x (n + 1)-matrix

0

0

0

b

B

0

22 0 - 0
2(b+ %) 3.22 0
2(p+45) 3(b+2%) 0

0 3(8+24) n(n—1)2




More Examples of Polynomial Jump-Diffusions

» Any affine process is a PJD
> Lévy driven GARCH diffusion:
dX: = (b+ X:) dt + Xe— dL;
for a Lévy martingale L;
> Jacobi type processes on E = unit ball

dX; = (b+ BX;) dt + /(1 — || X¢]|2) ZdW;

and more general diffusions on quadric (compact) sets in RY



Outline
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Definition of Affine Jump-Diffusion (AJD)

Let X; be jump-diffusion on E C RY with generator G
Definition 2.1.
G is affine on E if, for all x € E, u € iRY

Gexp(u'x) = (F(u) + R(u) " x) exp(u" x),

for functions F : iRY — C and R = (Ry,...,Ry)" :iR? — C9. In
this case, we call X; an affine jump-diffusion (AJD) on E.

Note: this is a relaxed definition compared to [Duffie et al., 2003]



Characterization of Affine Jump-Diffusions

Lemma 2.2.
The following are equivalent:

1. G is affine on E.
2. a(x), b(x), and v(x, d§) are affine on E,

a(x) = ap + Z,{I:l Xiaj,
b(X) = by + 27:1 x;bj,
v(x, d€) = vo(d€) + g xiwi(de),

for some a; € S9, b; € RY, and signed measures v;(d¢) on RY.
In this case, F(u) and R(u) are given by (write F(u) = Ro(u))

1
Ri(u) = EuTa,-u—l— bl u+ /]Rd

(e“T£ 11— uT§> vi(d€).



Characterization of Affine Jump-Diffusions: Proof

Sketch of Proof.
Observe that

Geu' 1 T T
— = —u a(x)u+ b(x) u—+
el'x 2 R

and match terms..

Affine Jump-Diffusions

) (e ule _q uT§> v(x, d§)

O



Affine are Polynomial Jump-Diffusions

Corollary 2.3.
If Xt is an AJD and G is well-defined on Pol(E) then X; is a PJD.

Affine Jump-Diffusions



Affine Transform Formula

Theorem 2.4.
Let X; be an AJD on E, u € iR, T >0, and let ¢(7) and
Y(1) = (Y1(7), ..., %a(7))" solve the generalized Riccati

equations
¢'(1) = F(¥(7)), $(0) =0

for0<7<T.If
Re ¢(7) + Retp(7) Tx <0, 0<7<T, xE€E,
then the affine transform formula holds,

Elexp(u' X7) | Fe] = exp(&(T — t,u) + (T — t,u) " X;).



Affine Transform Formula: Proof

Sketch of proof.
Drift of My = exp(¢(T — t) + (T — t) T X) is

Ge X = (—¢/ + F(v) — v/ + R()) ' Xe)M; = 0

and |M;| <1, hence M; is a martingale.



Affine Transform Formula: Extension beyond iR¢

Fact: If (T — t,u) and (T — t,u) have an analytic extension in
uon U C C9 the affine transform formula

Elexp(u' X7) | Fe] = exp(&(T — t,u) + (T — t,u) " X;).

holds for all u € U, see [Duffie et al., 2003, Thm 2.16].
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Overview

v

PJDs have great potential for financial applications

v

What do we know about their existence? Uniqueness?

v

This section shows results for polynomial diffusions

v

Based on [Filipovi¢ and Larsson, 2016]



Polynomial Diffusions: Ingredients

Ingredients:
» Drift function b: RY — R? with b; € Pol;(RY)
» Diffusion function a: RY — S? with a;; € Polo(R?)
» “Polynomial” operator on R?

GF(x) = %tr(a(x)vzf(x)) + b(x) TVF(x)

» State space E C RY



Polynomial Diffusions: Issues

Find conditions on a, b, E for

» Existence of E-valued solutions to corresponding SDE

T=—a0nE

for continuous o : RY — RY*9 with oo
» Uniqueness in law for E-valued solutions to (3.1)

» Boundary (non-)attainment of E

For applications: find large parametric classes of such a, b, E



Example: Scalar Polynomial Diffusions

» Generic scalar polynomial diffusion on interval E C R

dX; = (b+ BX;) dt + \/a + aX; + AXZ dW;

» Basis {1,x,x?,---,x"} of Pol,(E)

» Coordinate representation of p(x) = Y"7_, pxxk:

B= (o, pn)|

» Matrix representation of G: (n+ 1) x (n + 1)-matrix

0

0

0

b

B

0

22 0 - 0
2(b+ %) 3.22 0
2(p+45) 3(b+2%) 0

0 3(8+24) n(n—1)2




Towards Uniqueness: determinacy of moment problem

» Determinacy of moment problem: moments determine
distribution

» Sufficient condition: finite exponential moments (analyticity
of characteristic function at zero)



Exponential moments

Theorem 3.1.
If
E [e‘S”X"lq < oo forsome 6 >0 (3.2)

and the diffusion coefficient satisfies the linear growth condition
llax)|l < C(1+||x||) forall xeE (3.3)
for some constant C, then for each t > 0 there exists € > 0 with

E [es1%l] < oo,



Uniquess in law from moment problem

Theorem 3.2.

Let X be an E-valued solution to (3.1). If for each t > O there
exists € > 0 with E[exp(e]| X¢||)] < oo, then any E-valued solution
to (3.1) with the same initial law as X has the same law as X.

In particular, this holds if (3.2) and (3.3) are satisfied:

E [e‘s”Xf’lq < oo forsome §>0

la()|| < C(1+||x||) forall xe€E.



Limits and an open problem

» Theorem 3.2 does not apply for geometric Brownian motion
dXt - Xt dBt
» Open problem: Can one find a process Y, essentially different

from geometric Brownian motion, such that all joint moments
of all finite-dimensional marginal distributions,

E[Yy" - V)]

coincide with those of geometric Brownian motion?



Pathwise uniqueness for d = 1

Theorem 3.3.

If the dimension is d = 1, then uniqueness in law for E-valued
solutions to (3.1) holds.

Polynomial Diffusions [Filipovi¢ and Larsson, 2016]



Combined result

Assume SDE (3.1) decomposes for X = (Y, Z) as

dYt = by(Yt) dt + O'Y(Yt) th (34)
dZt == bZ(Yt, Zt) dt + UZ(th Zt) th

Theorem 3.4.

Assume that uniqueness in law for Ey-valued solutions to (3.4)
holds, and that oz is locally Lipschitz in z locally in y on E: for
each compact subset K C E, there exists a constant  such that
for all (y,z,y',2') € K x K,

loz(y,z) —oz(y',2)|| < &llz—Z|.

Then uniqueness in law for E-valued solutions to (3.1) holds.



Stochastic invariance problem

» Existence of R9-valued solution to (3.1) holds due to
continuity and linear growth of b and o

» Existence of E-valued solution to (3.1) thus boils down to
stochastic invariance of E

» Assume E is basic closed semialgebraic set
E={p>0[peP}nM

where
M={q=0]qgeQ}

for finite collections of polynomials P and O



Examples
» E=RI:

Il
=

’P:{pl-(x):X;| iZl..d}, Q
E =10,1]%

v

P ={pi(x) =xi; pa+i(x)=1-x|i=1.d}, Q=0

» E = unit ball:
P={p(x)=1~|x*}, Q=0
» E=ST:
P=A{pi(x)=detxy | C{1,...,m}}, Q=0
» E={x€R? |x +- + x4 =1} unit simplex:

P=A{pi(x)=xi|i=1.d}, Q={qg(x)=1-—x— - —xq}



Necessary conditions
Theorem 3.5.

Suppose there exists an E-valued solution to (3.1) with X = x,
for any x € E. Then

1. aVp=0and Gp >0 on EN{p =0} for each p € P;
2. aVqg=0and Gg =0 on E for each g € Q.

{p, =0}



Sufficient conditions

Geometry of E:
(G1) Vr(x), r € Q, are linearly independent for all x € M
(G2) the ideal generated by Q U {p} is real for each p € P

Conditions on a, b:

(A0) aeS? on E

(Al) aVp=0and Gp>0on MN{p=0} for each p e P
(A2) aVg=0and Gg=0on M for each g € Q



Some interpretations

(G1) Vr(x), r € Q, are linearly independent for all x € M

implies that M is submanifold of dimension d — |Q]|.

(G2) the ideal generated by Q U {p} is real for each p € P
(Al) aVp=0and Gp>0on MN{p=0} for each p e P

together imply that aVp = hp on M for some vector of
polynomials h (real Nullstellensatz).

Lemma 3.6.
Let p € Pol(RY) be irreducible. The ideal generated by p is real if
and only if p changes sign on R9: p(x)p(y) < 0 for some x, y.



Existence theorem

Theorem 3.7.

Suppose (G1)-(G2) and (A0)—(A2) hold. Then G is polynomial on
E, and there exists a continuous o : R? — RY*9 such that

a= o0 on E and SDE (3.1) admits an E-valued solution X for
any initial law of Xy, which spends zero time at the boundary of E:

t
/ 1(p(x,)=0yds =0 for all t > 0 and p € P. (3.5)
0



Boundary attainment

Theorem 3.8.
Let X be an E-valued solution to (3.1) satisfying (3.5). Let p € P
and h be a vector of polynomials such that aVp = hp on M.

1. If there exists a neighborhood U of E N {p = 0} such that
26p—h'Vp>0 on ENU (3.6)

then p(X¢) > 0 for all t > 0.
2. Letx € EN{p =0} and assume

Gp(x) >0 and  2Gp(X) — h(x) ' Vp(x) < 0.

Then there exists € > 0 such that if | Xo — X|| < € almost
surely, then X hits {p = 0} with positive probability.



Example

v

Square-root diffusion on E = R4

dXt = bdt—f‘U\/XtdBt

v

a(x) = o%x, b(x) = b
P = {p} with p(x) =x, Q=10
a(x)p'(x) = o?p(x), hence h(x) = o2 and

v

v

2Gp(x) — 02p/(x) = 2b — &2

— Feller condition 2b > ¢ for boundary non-attainment
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Motivation

Build PJDs from basic PJDs

Introduce nonlinearities into financial models

v

v

v

Idea: start from simple building blocks (Gaussian process,
Lévy process, ..), exponentiate or subordinate

v

This works thanks to invariance of polynomial property!



Exponentiation of Polynomial Jump-Diffusion

> Let X; be a PJD with generator G on E C R4

» Fix ne N, let 1 + N = dimPol,(E), and (1, H(x)) be a basis
of Pol,(E) where we write

H(x) = (h(x), ..., hn(x))
» Let G be matrix representing G on Pol,(E)

Theorem 4.1.
The process X; = H(X;) is a PJD on H(E) C RV,

» Fact: the drift of (1, X;) is (1, X;)G dt (why?)

» We next characterize the generator G of X;



Some Facts about Pol,,(H(E))
» Fact: H: E — H(E) is injective: there exists L : RV — R4
with L; € Poly(RM) such that
L,(H(X)) =x;, x€E
» Pullback ¢* defined by ¢*f = f o ¢ for any function f

Lemma 4.2.
For every m € N the pullback H* : Pol,(H(E)) — Polms(E) is a
linear isomorphism with inverse L*.

Numerically very useful consequence:

dim Pol(H(E)) < (m’;; d> < <m;N> — dim Pol,(RY)

~~

=dim Polmn(E)



Dimension Reduction

lllustration for d =3, E = R3, n =2, such that N =9,

x10?

o dim Palm[Fl"]
3| —o—dim Pol _(HEI)

i
EY.
nf
e
-~
@
=

dim Polyo(H(E)) = 1771, dim Pol;o(RN) = 10°, dim Poly(RY) ~ 10.



Action of G on Pol,,(H(E))

» Fact: the generator of X = H(X:) is G = L*GH*
» FixmeN, let 1+ N = dim Pol,,(E) and
ho(x) =1, hi(x),..., hn(x), hnyi(x), ..., hy(x)

be a basis of Pol,,(E)
» Gives basis h; = L*h; on Pol,,(H(E))
» Let G be matrix representing G on Pol,,,(E)

Lemma 4.3. )
The matrix representing G of Pol,(H(E)) is G.



Affine Property is not invariant under Exponentiation

» Consider the affine (square-root) diffusion
dXt = I/i(e — Xt)dt —+ o/ Xtth
» Augmented process (Xt, Yi) = (X, X?) is not affine (why?):

dXt = I‘i(e — Xt)dt + o Xtth
dY; = ((2k0 + 0%)X; — 2k Yy)dt + 20/ X YedW,

» However (X;, Y;) is polynomial, consistent with Theorem 4.1



An Extension

As above:
> Let X; be a PJD with generator GX on ECRY

» Fix ne N, let 1 + N = dimPol,(E), and (1, H(x)) be a basis
of Pol,(E) where we write

H(x) = (h1(x), ..., hn(x))

New:

» Let Y; be a semimartingale on R€ such that Z; = (X, Y;) is a
jump-diffusion with generator

G71(2) = 5tr(a? (V2 (2)) + b7 ()T VF(2)
— Z) — T V4 VZ X
[ (0= 1) - TVHE) vk, d0)

(Y: has conditionally independent increments given X;)



Decomposition of Characteristics

» According to decomposition Z; = (X¢, Y:) we write

X XY pX

#00= (25 ) o= (55).
Vi (x,d¢) = v? (x, d& x dn), ¢ =(&n)

» Constituents of polynomial operator GX are

aX (x), bX (x), X (x, d§)

for marginal measure of v4(x, d¢ x dn) given by

VX (x, A) = / 14(€)v% (x, d€ x di)
Rd+e



Extension of Polynomial Jump-Diffusion

Theorem 4.4.

The following are equivalent:
1. The process Z; = (H(X:), Y) is a PJD on H(E) x R¢;
2. a%(x), b%(x), and v%(x, d¢) satisfy

b (x) € Pol,(E),

aj (x) +/ ninjv® (x, d§ x dn) € Polan(E),
Rd+e
aZ_(Y(X) T /d+ §i77jVZ(Xa d€ x dn) € Polyy(E),
R e
/R‘He £nPr?(x,d¢ x dn) € Poligyy n(E),

for all i,j and all || + |B] > 3.



Sanity Check

» Theorem 4.4 is trivial for n =1 (why?)

Invariance Properties: Exponentiation



Some Facts about Pol,,(H(E) x R¢)

» Fact: ¢(x,y) = (H(x),y) : E x R® — H(E) x R¢ is injective:
V(o(x,y)) = (x.y), (x,y) € ExR®
for ¥(x,y) = (L(X),y) : RN x R® — R? x R®

Lemma 4.5.
For every m € N the pullback ¢* : Pol,,(H(E) x R¢) — V,, is a
linear isomorphism with inverse 1)* where

V,, = span {p(x)yﬁ: p € Pol(E), degp+ n|B| < nm}
C Polyn(E x R®)

» Fact: the generator of Z; = (H(X:), Y;) is GZ = *GZ¢*



Extension Theorem 4.4 cont'd

Theorem 4.4 (cont’d).

Property 1 or 2 is equivalent to

3. G4V, C V,, for all m € N.

» This equivalence is illustrated by

Pol(H(E) x RY) 9 Pol,,(H(E) x RY)

oA Al

Z
V,, g

» Numerically very useful consequence:

dim Pol,,(H(E) x R®) < mn+d+e) - <m+N+e>
mn m

=dim V;p<dim Pol s (E xR®) —_——
=dim Pol (RN xR¢)




Action of GZ on Pol,,(H(E) x Re)
» Assume Z; is a PJD on H(E) x R®
» Fix meN, let 14+ N = dim Pol,,,(E) and
ho(x) =1, hi(x),..., hn(x), hnyi(x), ..., hy(x)

be a basis of Pol,,(E)
» Gives basis of V,, of the form

hf(x,y) = hj(x)y”, deghj+ n|B| < mn
> Gives basis hZ = ¢*hZ of Pol,(H(E) x R®)
Lemma 4.6.

The matrix representing GZ on Pol,,(H(E) x R€) equals G%, the
matrix representing G< on Vp,.



A Choice of Basis

» Assume hiz(x,y) = h;j(x) for i = 0...N (8=0)

» Then GZ has the form
z GX «
(% )

» However, we need symbolic calculus to determine G<, i.e.
gzhiZ(X,y) for hiZ(x,y) = hj(x)y'B with 3 #£0



Application of the Extension Theorem 4.4

Corollary 4.7.

Lete =€ +¢", P(x) = (p1(x),...,pe(x))T and Q(x) = (g;(x)),
1<i<eé’ 1<j<d, with

pi(x) € Pol,(E), gjj(x) € Polp—1(E).

Then

e <QI(D)(<i<—t§ fl;(t>

satisfies conditions of Theorem 4.4, such that Z; = (H(X¢), Yt) is
a PJD on H(E) x R¢.



Co-Variation and Compensator

» Corollary 4.7 covers co-variation
d[Xi, Xjle = d(Xi,eXj¢) = Xie—dXj e — Xje—dXi ¢
and its compensator
d(Xi, Xj)e = T (5, ) (Xe) dt

for the carré-du-champ operator I'X(x;, x;) € Poly(E)

» Application: variance swaps!



Outline

Invariance Properties: Subordination

Invariance Properties: Subordination 70/224



Markov Setup

> Let X; be a PJD with generator G on E C R4

» Assumption: X; is Markov with transition kernel p:(x, dy) on
E, such that

E[F(Xosrs) | o] = /E F(y)pe(Xe, dy)

» Let Z; be an nondecreasing Lévy process (subordinator) with
Lévy measure v4(d¢) and drift b% > 0,

G7f(z) = b2F/(2) + /E (F(z+C) — F(2)) vZ(dC)

see [Sato, 1999, Thm 21.5].
» Fact: distribution ut(dz) of Z; satisfies u'™s = ut * p*:

[ f(z)ptt5(dz) = [ F(2)(u'*p°) = [ [ f(x+y)u'(dx)us(dy)



Bochner's Theorem

Theorem 5.1.
The time-changed X; = Xz, is a PJD on E with transition kernel

Bie(x, dy) = E[pz,(x, dy)] = / pa(x, dy)put(dz)
0
and generator on E given by

GF(x) = bZG(x) / [0 = £60) . ey ()

Proof.
See [Sato, 1999, Thm 32.1], and also [Linetsky, 2007, Thm 6.2] for
more details on characteristics. O



Action of G on Pol,(E)

» Fixne N, let 1+ N =dimPol,(E), and (1, H(x)) a basis of
Pol,(E) where

H(x) = (h1(x), .., hn(x))

» Matrix representing G on Pol,(E): G(1, H(x)) = (1, H(x))G
» Matrix G representing G on Pol,(E) is then

G = bZG+/OO (6 — 1dw) v7(dC)
0



Affine Property is not invariant under Subordination

v

OU process dX; = —kX; dt + o dW; is affine with normal t.k.

—K o? —2K
pe(x, dy) ~N<e tx,ﬂ (1—e? t))

v

Poisson subordinator Z; with 34 = 0 and v4(d() = 6;3(d()

v

Theorem 5.1: time-changed )N(t = Xz, is polynomial
But X; is not affine if x #0:

v

o - [ 0% - iy - (1)
E

2,2

for C(t) = Z% (1 — e~ 2)

4K
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Goal

Construct asset return models based on PJDs for ...
option pricing (P = Q)
portfolio choice

v

v

v

v

portfolio risk management

> economic scenario generation



Polynomial Asset Return Framework

v

Let X; be a PJD with generator G on E C R4
Let d = d’ + e and write X; = (X{, R;)

> e asset price processes S ;... 5S¢ with returns

v

dS; +
Si,t—

= It dt + dR,"t

v

Risk-free rate r;
> Excess returns dR; ;
Assumption: AR;: > —1 and in fact, write { = (€, ¢R),

v

Jpalog(l+ERV u(x,dE) < oo, i=1...e



Risk-Neutral Dynamics

» Specifying the simple returns allows a simple characterization
of risk-neutral dynamics (P = Q)

Lemma 6.1.
P = Q is a risk-neutral measure if and only if Ry has zero drift,
bR(x) = 0, such that R; is a local martingale.



Log Returns

> The logarithmic excess returns Y; are defined by
Sie = SigelsrsdstVic

Lemma 6.2.
Stochastic exponential calculus implies

dYie = (BR(Xe) — 2aR(X:) — fau (EF — log(1 + £R)) v(Xs, d€)) dt
+ dM;

where M, are local martingales with d(Mf, M), = a?(Xt)dt and
AM; ; = log(1+ AR;+). The jump measure of Zy = (Xt, Yt)
admits moments of all orders.



Polynomial Log Returns

» Does Z; = (X¢, Y;) satisfy Extension Theorem 4.4 7

Lemma 6.3.
Assume jump measure of X; is of the mixed type

d d
v(x,d€) = vo(d€) + > xiwi(d€) + > xixwy(d€) + n(x, d€)

i=1 ij=1

for signed measures vo(d€), ..., vq(d§) and vi(d€), i,j=1...d,
on RY and transition kernel n(x, d¢) from R? into RY" x {0}e.
Then Z; satisfies Extension Theorem 4.4 for n = 2, such that

Z: = (H(X:), Y:) is a PJD on H(E) x Re.



Conditional Independent Returns

» If characteristics of X; = (X{, R¢) only depend on X],
a(x) = a(x'),  b(x) = b(x'), v(x,d§) =v(x', d¢)

> Then Z; = (X{, Yt) satisfies Extension Theorem 4.4 for n =2,
such that Z; = (H(X{), Y:) is a PJD on H(E’) x R®

» This reduces dimension!



Example: Factor Models

» Factor models assume excess return is

dR;: = B dXF +dxjde  i=1.. e

It

where

» X[ is dF-dimensional factor process
» [3; loading vector of ith excess return
» dX/d° idiosyncratic component of ith excess return

» Put in polynomial asset return framework as
F idli
Xe = (Xt vth IO?XL{)

with d = dF + e+ d’, such that (X, R;) is a PJD with
conditionally independent returns dR; given X;



Towards Real-World Dynamics

» Assume we have specified PJD X; under Q (a, b,v)

» Goal: equivalent change of measure P ~ Q such that
P-characteristics of X; are

B (x) = b(x) + a(x)é(x) + / ((E) — 1)¢ vix, de).

]Rd
V' (x, d€) = ¥(&)v(x, d€)
(6.1)
where

> ¢(x) € RY is market price of diffusion risk
» (&) > 0 is market price of risk of the jump event of size £



Equivalent Change of Measure

Assumption: £(L) is a true martingale for

dL: = ¢(X¢) TdXE + /
Rd

(¥(§) = 1) (WX (de, dit) — v(Xe, dE)at) |

where Xf is the continuous local martingale part of X; and
pX(d€, dt) the integer-valued random measure associated to the
jumps of X;.

Lemma 6.4.
P ~ Q with Radon-Nikodym density process £(L) and X; has
IP-characteristics given by (6.1).



Polynomial Property under Real-World Measure

Corollary 6.5.

Assume jump measure of X; is of the mixed type as in Lemma 6.3.
Then X; is a PJD under P if and only if

(a()6(x); + /(w(@—l S sxalde) + n(x, d6)

k,I=1
€Poly(E), i=1...d.

In this case, Z; satisfies Extension Theorem 4.4 for n = 2, such
that Z; = (H(X¢), Yt) is a PJD on H(E) x R¢ also under P.



Pricing European Call Options

» Call option on S; with strike K and maturity T has price
eI (S — K)T | Fol

=E [(S, o0e _Ke lo ’Sds> |.7-"0]

» Assumption: deterministic interest rates r;
» Pricing boils down to computing expectation of the form

E[F(Yir) | Fol

for discounted payoff function F(y;) = (e¥ — ¢)"



Pricing Path-Dependent Options

Barrier and fader options on S; have payoff of the form P+f(S; 1)
at maturity T where

» f(Si 1) is some European style nominal payoff function

» Pt is path-dependent variable of the form
P _ {l{ianTS,-,be}v barrier type
T — 1 T-
T Jo ls..>pydt, fader type.

for some barrier b

Such options do not admit closed form prices and need to be
numerically approximated.



Pricing Path-Dependent Options: Approximation

» Discretising the time interval 0 =tp < t1 < --- <ty =T
leads to

Gi—Y

ijzl 1{51.,%12,,} #=1, fader type.

m .
Py~ {Hj—l 1{5,.,5_7121,}, barrier type

» Pricing boils down to computing expectations of the form
E[F(Yf,tv s Yi,tm) | ]:to]

for discounted payoff function F
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Generic Pricing Problem in Finance

Let X; be a PJD with generator G on E C RY.

Pricing an (path-dependent) option boils down to compute
conditional expectation

Iy, = E[F(X) ’ ';Eto]

for some
» time partition 0 < g < t; < - < tpy
» (polynomial) projection X = P(Xy,,...,Xt,) on E= P(E™)
» discounted payoff function F(x) with x = (x1,...,xm) € E
The following method extends [Filipovi¢ et al., 2013]



Weighted L2 Space

» Denote g(dx) regular conditional distribution of X given Fy,

» Let w(dx) be auxiliary probability kernel from (2, F,) to E
such that
g(dx) < w(dx) P-as. (7.1)

with likelihood ratio function denoted by ¢(x) such that
g(dx) = ¢(x)w(dx).
» Define L2, = L2 (E) with norm given by

191 = [ F0w(e)

and corresponding scalar product

(f,h)w—/Ef(x)h(x)w(dx).



Orthogonal Polynomials

» Assumption: L2, contains all polynomials on E,
Pol(E) C L2, (7.2)

» Let {ho(x) =1, h1(x),...} be an orthonormal set of
polynomials spanning the closure Pol(E) in L2,.

» Assumption: the likelihood ratio function lies in L2,
U(x) € L2, (7.3)
» As a consequence, its Fourier coefficients

l = (hio Oy = /E hi(x)0()w(dx) = E [hi(X) | o

are in closed form by moment transform formula Theorem 1.7.



Projected Price

» Assumption: the discounted payoff function lies in L2,
F(x) € L2,

» Denote F the orthogonal projection of F onto Pol(E) in L2,.

» Elementary functional analysis implies that the projected price
ly, = E[F_(X) ‘ ]:fo]

equals

%:iéﬁu) —(F0), =Y Rl (74)

k>0

with Fourier coefficients given by

a:u%ﬁwzwhmwzémuvumw@. (7.5)



Proxy Price

» Fact: Iy, = Iy, if the projection F = F in L2,
» Note: F = F if Pol(E) = L2,, which depends on w(dx).

» Proxy price: approximate the price by truncating series (7.4),

K
)= > Filk
k=0

for finite K, such that the pricing error is

) = Iy, — ltSoK) = Iy - 7to + 7to - It(oK)

projection bias  truncation error

with truncation error I, — lt(oK) — 0 for K — oo.



Proxy Measures

(K)

» Computation of /; "’ as numerical integration over E,

K
= (F lih)w /F(x)g(K)(dx), (7.6)
k=0 E
for the proxy measure
g (dx) = (ZICq tehr(x)) w(dx).

» Fact: g(¥)(E) =1 because (hy, hg = 1),, = 0 for k > 1
» But g()(dx) is only a signed measure in general.
» Fact: g(®)(dx) — g(dx) in a L2 -weak sense: for all f € L2,

lim /E f(x)gM)(dx) = /E f(x)g(dx).

K—o00



Choice of Auxiliary Kernel

> In specific cases: closed-form Fourier coefficients Fy, e.g.
[Ackerer et al., 2015] for call options

> In general: numerical integration of (7.5), or equivalently (7.6)
» Depends on the choice of auxiliary kernel w(dx)
» How to choose w(dx)?

» Either good guessing, e.g. mixture of normals
w(dx) = (1 — X)ny, 0, (X)dX + Ay, 0, (X)dx

matching first two moments of g(dx)

» Or via simulation, see next..



Simulation Approach: Markov Setup

» Assume Markov setup: parametric family of probability
measure {P?}yco on (R, F) such that X; is a PJD with
generator G? under any P?

» Denote g?(dx) the PP-regular conditional distribution of X
given Fy,

» Fix baseline parameter 6y € ©, fix initial xp € E, and set
w(dx) = E%® [X € dx | X¢, = xo]

> Assume
g’(dx) < w(dx) P-as.

with likelihood ratio function #/(x) € L2, P%-a.s. for all § € ©



Simulation Approach: Orthonormal Polynomials

Obtain ONB {ho(x) = 1, hy(x), ...} of Pol(E) in L2, without
numerical integration:
> Let ho(x) =1, hy(x),... be any basis of Pol(E).

» Moment transform formula Theorem 1.7: scalar products
(P, hy)w = E” [Ek(X)E,(x) | Xeo = XO]

in closed form

» Perform exact Gram—Schmidt orthonormalization gives

orthonormal basis {hg = 1, hy, ...} of Pol(E) in L2,
» Yields closed-form Fourier coefficients

0 = (h, 0%, = / hie(x) €% (x)w(dx) = EY [hx(X) | Fr]
E



Simulation Approach: Fourier Coefficients of F(x)

» Approximate w(dx) by simulating X under P% given X;, = xo

» Estimate the Fourier coefficients
Fie = E% [(X)F(X) | Xt = x0]

by Monte-Carlo method

» Numerical efficiency: pre-compute and store simulation; using

| ial ion above allows t t ies 1K)
polynomial expansion above allows to compute proxies I

efficiently for various # € © and thus calibrate 6 to data



Alternative Approach: Edgeworth Expansion

» Use an Edgeworth expansion of the characteristic function
E [ezF(X) | fto} e Gy

CztGZ z} 4
— o7+ G5 (]_ + C3§ + O(Z ))
where C, refers to the nth cumulant of g(dx)
» Moment transform formula Theorem 1.7 gives closed-form
expressions for C,

» Apply standard Fourier inversion to infer I, e.g.
[Carr and Madan, 1998] for at-the-money call options and
[Fang and Oosterlee, 2008] for out-of-the-money call options
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Specification Problem

» We have seen how to change measure and how to price
options in a general polynomial asset return framework

» How shall we specify the polynomial factor process X;?

> Example: every affine model falls into the polynomial
framework

» Example: factor models with conditionally independent returns

» Here we focus on (novel) non-affine polynomial models



Linear Diffusion Models: Framework

A novel flexible class of diffusion based models

v

v

Assume X; = (X{, R¢) is a linear diffusion (hence polynomial)
dXe = (b+ BXe)dt + (C + Xp,el1 + - + Xa, e[ o) dWe

for some m-dimensional standard Brownian motion W;

v

Nice (in contrast to affine models):

> a priori no constraints on parameters
» unique strong solution always exists in RY

v

Allows for stochastic volatility and correlations (X, X;)



Alternative Volatility Representation

» Linear volatility
(CH+Xpel1 4+ Xy ¢l g)dWs
can alternatively be represented as
>oheq (4 i Xe) dWie e

where ¢, are column vectors of C and jth column of v, is kth
column of [';: ;i =T«



Linear Diffusion Models: Cond. Independent Returns

Start with an observation:

Lemma 8.1.

Let X;: be a linear diffusion on E and (1, H(x)) a basis of Pol,(E)
for some n € N. Then H(X:) is a linear diffusion on H(E).

Build up linear diffusion models with cond. independent returns:

1. Let X; be d-dim. linear diffusion on E C R¢
2. Specify excess returns

th - Q(Xt) th

for Q(x) € R®*™ with gj; € Pol,(E) for some n € N

3. Let (1, H(x)) be a basis of Pol,(E). Then (H(X¢), R:) is a
linear diffusion on H(E) x R€



Examples ford = e =1

» Revisit some examples for d = e =1

dXe = (b + BX;)dt + (c +vX:) dW
dR: = X; dW[

with leverage d(WX, WR) = pdt
» extended Stein and Stein (1991): OU (affine)

dX; = (b + BX;)dt + c dW)
» extended Hull-White (1987): log-normal (not affine)
dX; = (b + BX;)dt + X dWX

see also [Sepp, 2016]



Example for d = e = 1: Quadratic Volatility

» Quadratic volatility, [Filipovi¢ et al., 2016]:

dX: = (b + BX;)dt + (c +vX:) dW
dR: = X2 dWF

with leverage d(WX, WR) = pdt
» Lemma 8.1: (X;, X?) is a linear diffusion on {(x,x?)}

» Extension Theorem 4.4: (X;, X2, R;) is a linear diffusion on
{(x,x*)} xR

» Lemma 6.3: (X;, X2, Y:) is a linear diffusion on {(x,x?)} x R
for log-excess return Y;

» For OU (v = 0): (X, X?) is affine but (X;, X2, Y;) is not
affine if mean-reversion level is non-zero, b # 0 (why?)



Stochastic Volatility and Correlation Models

» Let X; = (X£, X!) be linear diffusion, d = d* + d’

> Specify excess returns
dR;; = o} fT dW,
1,t Lt Yt t

for volatility process o;; and loadings process /; ;

» Volatility process linear in X,
T
oit = ki +K; Xt,

for parameters k; € R and k; € R

» Loadings process linear in X¢,
lie = A+ NiXE,

for parameters \; € R™ and A; € Rmx‘#, m=dim W;



Unit Sphere-Valued Diffusion

Denote S = {||x|| = 1} the unit sphere in R’

Lemma 8.2.
Assume X! is autonomous with Xo € S and of the form

m
dX{ = B'X{dt + ) X dWi e
k=1
for v € Skewye and B + %kazl Ve Vi € Skewge. Then X{ € S.
» Assumption: Conditions of Lemma 8.2 hold and
NI <1, ATAG = (1= [[Ai]) idge

» Then ||4; ]| =1



Obtain Stochastic Volatility and Correlation Model

As above: (H(X:), R:) and (H(X:), Y:) are linear diffusions, where
(1, H(x)) is a basis of Polo(S x R9), with
» stochastic volatility of returns
d<R,', Ri>t
dt

= |0l

» stochastic instantaneous correlation between returns

d(R;, Rj):

loiellojeldt Clele = N+ XETN X
I7 .17
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Stochastic volatility models

The volatility of stock price log-returns is stochastic

| Black-Scholes  Heston (affine SVJD)
volatility constant stochastic € R
calls and puts | closed-form Fourier transform
exotic options | closed-form

Black-Scholes model C | Jacobi model | — Heston model

» stochastic volatility on a parametrized compact support

» vanilla and exotic option prices have a series representation

» fast and accurate price approximations



Jacobi Stochastic Volatility model

Fix 0 < Vmin < Vmax. Define the quadratic function

(V - Vmin)(Vmax - V)

Q(V) B (\/ Vmax — M)2

<v

Jacobi Model
Stock price dynamics S; = Xt given by

th = /<;(9 - Vt) dt+0’\/ Q(Vt) dWlt
dXt = (r - Vt/2) dt+p \/ Q(Vt) dW]_t + \/ Vt - p2 Q(Vt) dW2t

(9.1)
for k,0 > 0, 0 € [Vmin, Vmax], interest rate r, p € [-1,1], and
2-dimensional BM W = (W4, W5)

Remark: ¢~ "S; = e "Xt is a martingale



Some properties

The function Q(v)
v > Q(v), v= Q(v) if and only if v = /VminVmax, and Q(v) >0

for all v € [Vimin, Vmax|

Vmax T

Vs  +

Vmin

0 Vmin Vi Vmax

Instantaneous variance
d(X, X)t = Vi € [Vmin, Vmax] is a Jacobi process



Some properties (cont.)

Instantaneous correlation

d{V, X)¢ B
VAV, V) Jd(X, X): pvQ(Ve)/ Ve

Polynomial model

(V4, Xt) is a polynomial diffusion — efficient calculation of
moments

Black-Scholes model nested
2
Take Vimin = Vmax = 0fg

Heston model as a limit case
If Vimin — 0 and vimax — 00 then (V4, X;) converges weakly in the
path space to the Heston model



Implied volatility

Bounded implied volatility
Option with positive BS gamma (< convex payoff for Europ.)

V Vmin < 01V < v/Vmax

= Forward start option oy does not explode
(Jacquier and Roome 2015)
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Log-price density
We define
Cr = Jiy (Ve — p?Q(V4)) dt

Theorem 9.1.
Let € < 1/(2Vmax T). If Ct > 0 then the distribution of X1 admits
a density gr(x) on R that satisfies

/ e€X2gT(x) dx < oo (9.2)
R

I
E [CT—W} < (9.3)

then gr(x) and e’ gr(x) are uniformly bounded and continuous
on R. A sufficient condition for (9.3) is Vmin > 0 and p2 < 1.

Remark: The Heston model does not satisfy (9.2) for any ¢ > 0



A crucial corollary

Corollary 9.2.

Assume (9.3) holds. Then ((x) = &) ¢ 12, where

2 .= {h:/R\h(x)FW(x)dx}

and w(x) is any Gaussian density with variance o2, satisfying

2 > Vmax T

2> (9.4)

g

» (Filipovic, Mayerhofer, Schneider 2013) For the Heston model

we have that ((x) = £10J € 12, where w(x) is a (bilateral)
Gamma density
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Weighted [%—space

The weight function

w(x) = Gaussian density with mean f,, and variance o2,

The weighted Hilbert space
13 = {00 1171, = [ 002 wixdos < o
R
which is a Hilbert space with scalar product

mawzéamammmw

Orthonormal basis — Generalized Hermite polynomials

Ha(x) = ——H, <X_’“‘W>

Ow

where H,(x) are the standard Hermite polynomials



Price approximation

Pricing problem
Assume that X7 has a density g7(x)

mr = E[f(XT)] = / f(x)gr(x)dx
R
Price series expansion
Suppose £(x) = gr(x)/w(x) € L2, and f(x) € L2, Then

T = <f7€>w = Z fngn (95)
n>0
for the Fourier coefficients and Hermite moments
o= {F Hobu fn= {6 o) = [ Halx)gr(x) dx
R

Price approximation
N

N
T R 7r1(fN) = Z foln = Z (f,lnHn),, = / f(x)gs-N)(x) dx
n=0 n=0 R
(9.6)



Density approximation

“Gram-Charlier A expansion”

g (x Ze Ha

Gram-Charlier expansions of prices: Jarrow and Rudd (1982), Corrado and
Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...

6 = T T T
gg;o) 0.4 ) 0.
4t 102p - 1
9 0 *"'-'-'."."."-.".-".-‘a'-"-'aam—_
—02} - =
0 \ \ \ —04 L \ \ \ i
-0.2 0 0.2 0 25 50 75 100

ow € {1v, ,2v} with v = /Vmax T /24+¢, T =1/12, Xo =0, K = 0.5,
6 = Vo = (0.25)%, 0 = 0.25, vypip = (0.10)?, p = —0.5, and vimax = 1



European calls and puts - Fourier coefficients

Theorem 9.3.

Consider the discounted payoff function for a call option with log
strike k,

f(x)=e"T (ex - ek>+

Its Fourier coefficients f, for n > 1 are given by

1 k —
fn — efrT+,uw —— o /n—l ( Hw : UW)

Vn! Ow

The functions I,(w; v) are defined recursively by

[N]

v

lo(p;v) =e2 ®(v — p);
In(iv) = Ho—1(p)e" d(p) + via(uiv), n=1

where H,(x) are the standard Hermite polynomials, ®(x) denotes
the standard Gaussian distribution function, and ¢(x) its density
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Computational cost

Theorem 9.4.

The coefficients £,, are given by
Op = [h(Vo, Xo), -, hm(Vo, Xo)l e €0y, 0<n<N

where e; is the i—th standard basis vector in RM and ho, ..., hy is
a basis of polynomials. G, is the (M x M)-matrix representing the
infinitesimal generator of (Vi, X;) on Poly — sparse matrix

T T T T T
% va Gn % ]_073 = fn E!
, 1 S |
= F E B ]
S 1071 4 i |
20 110 :
1072 -
| | | | | | | | | | | |
10 20 100 500 10 20 100 500



Example: Call option pricing

Vmax = 0.3 Vmax = 1 Vmax =5

0.015 | 1 —L 1 H 1
I

-0.015 =

0.25 1

it
| u‘mm““‘

-0.25
|

0.04 ! Fos
0.03 |+ . S~

0.02 1t 1t .
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 25 50 75100 0 25 50 75 100 0 25 50 75 100

0

Figure: The Fourier coefficients (first row), the Hermite coefficients
(second row), and the price expansion (third row) as a function of the
order n. The parameters values are T =1/12, Xo = k =0, k = 0.5,
0 = Vo = (0.25)%, 0 = 0.25, vpin = (0.10)%, p = —0.5, and

vmax € {0.3,1,5}



Error bounds

Pricing error my — w,(rN) = ¢V

-

> faln

n>N

(%) (Z)

1. Analytic: £2,f2 < C x n=* for some k > 1 and C >0
2. Numeric: 3,y 2 =162 - SN, 22

n=0"%*n

Type of bounds

10% b/ 0.030 |
1%); 4 0.029 - n
g 1 0028 .
Ql%gﬂ \ \ L] \ \ \ \
0 100 200 300 0 100 200 300



Volatility smiles - Call option

Fix 6 = \/VminVmax = V& and scale up vpmin

Vmin = (0.10)2 Vmin = (0.175)2 Vmin = (0.245)2
0.50 F7 T = T T = T T =

30% | 1 1 1

25% | :

| | |
-0.2 0 0.2 —-0.2 0 0.2 —-0.2 0 0.2

Diffusion function o1/Q(v) (1% row) and smile (2" row)



SPX implied volatility calibration

20 1 T = 20 T =
1-week 2-week
15 - R 15 a
10 ! ! i 10 ! ! Rl
1750 1800 1850 1725 1800 1875
T T T T T T
20 |- 3-week - 20 |- 4-week 1
15 - = 15 a
10 [ ! ! L 0 ! R
1700 1800 1900 1700 1800 1900
\/5 K g 14 \/VO V Vmin V Vmax RMSE
Jacobi 0.3660 0.7507 1.0072 -0.6057 0.1178 0.0499 0.4476 0.8461
Heston 0.3655 0.7498 0.8573 -0.6047 0.1178 0.9447
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Key corollary revisited

Log-returns density

Ve = Xeo — Xy
for0<ty<ti<tr<---<ty Y =(Yy) has adensity gy . +.(v)

Weighting with Gaussians
Define w(y) = [17_; wi(y;) where w;(y;) is a Gaussian density with

H 2 8t,...,tn(¥) 2
variance oy,., then O L, if

Vmax (ti — ti—1)
EVi > max 12 1



Forward start call option

Payoff function e~"2(S;, — ekS; ) with 0 = tg < t; < to

?()/1,)/2) = e*”2(exo+y1+y2 _ ek+X0+yl)+

Fourier coefficients
o = | FOVHom (1) Hir ()5l

_ £0.K) ow' X0 Tty 0%, /2
m m1!
Hermite moments
£m1,m2 = E[Hml(yh)Hmz(Ytz)]
=K [Hml(Ytl)]E [Hmz(Ytz) | ‘Ftl]]
Price approximation
m+m<N

TFSs = E , fm1,m2£m1,m2 ~ E fm17m2€m1,mz

my,mz>0 my,m;=0

N
= 7r;(rs)



Forward start call option (cont.)

0 25 50 75 100

t=1/12, T—t=1/52, and k =0

Jacobi Stochastic Volatility Model [Ackerer et al., 2015]



Forward start options on the return

30%

25%

Vmax = 1

Vmax = (0.3)?

Figure: Implied volatility of a forward start option on the return with
maturity t + T, and strikes k = —0.10 (black line), k = —0.05 (blue
line), and k = 0 (red line) are displayed as a function of maturity T.

Here t =1/12, Xo =0, £ = 0.5, Vo = 0 = (0.25)2, o = 0.25,

Vmin = 107, and p = —0.5
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Conclusion

> new stochastic volatility model, V; is a Jacobi process

» option price series representation in weighted L2, space

» Hermite moments (polynomial model)
» Fourier coefficient (recursive formulas)

» computationally fast, empirically = Heston model,
pricing error bounds

» methodology applies to exotic option pricing
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Variance Swaps

v

Underlying price process (e.g. S&P 500 index)

;’St ~ rdt+ o, dvv:+/ (X — 1) (u(dt, dx) — ve(dx)dt)
t— R

v

The annualized realized variance over [t, T] equals

1 T T
RV(t, T) = ——, < / o2 ds+ / / x? p(ds, dx))
t t R

A variance swap initiated at t with maturity T pays

v

RV(t, T) — VS(t, T)

» VS(t, T): variance swap rate fixed at t



Forward Variance

» Fair valuation:
VS(t, T) = EL[RV(t, T)]
» Define the spot variance
vy = O'?+/ x2 vy(dx)
R
» Define the forward variance
f(t7 T) = E(P [VT]

» Then the variance swap rate equals

1 T
VS(t, T) = T_t/t F(t,s) ds



Quadratic Variance Swap Model

» Bivariate PP diffusion state process

dX1e = (by + By Xae o Xae) dt + /a1 + a1 Xae + ALXE AW,

dXar = (b2 + 2 Xae) dt + 1/ a2 + a2 Xar + AXE, AW,
» Spot variance is specified by

Ve = ¢o + YoXit + 7T0X12t



Explicit Forward Variance Curve

» (6, T)=¢(T —t) + (T —t) T Xe + X 7(T — t) Xe
» Linear ODEs for ¢, 1, and 7 can be vectorized by setting

q(r) = (¢(r) a1(r) vo(r) mulr) mia(7) 7r22(T))T

» The linear system then reads

0 b1 b2 al 0 an
0 fu B2 2bi+ 2by 0
dq(T) 0 0 P 0 2b; 2by + an
dr [0 0 0 28u+A 2f312 0 9(7)
0 0 O 0 P11 + P22 P12
0 0 0 0 0 2522 + A,

q(0)=(do vo 0 m 0 0)'.



Data

08

—2m
—3m
——6ém
—12m
—24m

0.7

06

05

0.2

0.1

I
1998 2000 2002 2004 2006 2008 2010

Figure: Variance swap rates /VS(t,t + 7) on the S&P 500 index from
Jan 4, 1996 to Jun 7, 2010. Source: Bloomberg

» In-sample (pre-crisis): Jan 4, 1996 to Apr 2, 2007
Quadratic hvia@iﬁﬁ@ﬁ*%ﬁ]ﬂl@iﬂC’Apr 3J,l02007 to Jun 7, 2010



Estimation Results: Bivariate Model

» Best fit for

dX1e = (0 + (A + B11) X1e+P12 Xor) dt + /1 + A X, dWi,

dXor = (ba + Baz Xot) dt + 1/ Xor + Ao X3, dWo,

» Recall spot variance v; = ¢g + 1o X1t + mo X7

B B12 by B22 A1 Ao
-5.1720 4.2324 0.1824 -0.2483 3.3895 0.0985
(0.0903)  (0.2346) (0.0322) (0.0021) (0.1206)  (0.0001)

) o m | MPR ‘ A
0.0175 0.0130 0.0283 -0.1770 -0.0021
(0.0002) (0.0008)  (0.0004) (0.0190)  (0.0868)

Table: Estimated parameters (robust standard errors into parentheses)



In-Sample Analysis: Filtered Factors

Filtered State Trajectory

Factor 1
——-(+Factor 2 p,)) / (\+p,,)

1998 2000 2002 2004 2006

Figure: Filtered factors Xj vs. stochastic mean reversion level

Quadratic Variance Swap Models [Filipovi¢ et al., 2016]

£+B12Xo
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Out-of-Sample Analysis: Predicted VS

Comparison between actual and predicted VS rates (maturity & months) in the two-factor model

+ Actual VS rates
Predicted VS rates

02

0.1

2008 2009 2010

Figure: Out-of-sample predicted variance swap rates vs. data for
6 months maturity. The quadratic diffusion model captures extreme
movements and spikes.

Quadratic Variance Swap Models [Filipovi¢ et al., 2016]
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Part V

Interest Rate and Credit Risk Models
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Motivation
Dynamic credit risk models
» Security pricing (bonds and CDSs ~$XX billions daily vol.)
» Risk management (portfolio, XVA, Basel Ill, IFRS 9)

Reduced form models (v.s. structural models)
» Simplicity: exogenous defaults driven by market factors
(Jarrow and Turnbull 1995, Lando 1998, Elliott, Jeanblanc, and Yor 2000)

» Affine default intensity models (Duffie and Singleton 1999, ...)

» Limitations: high dimension, non-vanilla pricing problems

This paper
» New flexible class of (linear) credit risk models
(related to Gabaix 2009, Filipovi¢, Trolle, and Larsson 2016)

» Tractable: explicit bond and CDS pricing formulas

» Versatile: simple price approximation with moments
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Cox construction of default time

» Default intensity process A; driven by some factors X;
)\t == f(Xt) Z O
~ probability of default over a small period dt is A;dt

» Default time 7 is defined by

t
T:inf{tzo:/ )\sdszE}
0

where E is an exponential random variable with mean 1

» Conditional survival probability

Plr> t | (Xe)ocsze] = exp (— / t f(xs)ds>

positive .non-ingreasing function of t starting at 1



Alternative construction

v

Let S; be a positive non-increasing process starting at 1

v

Default time 7 is defined by
T=inf{t>0:5 < U}

where U is a uniform variable on (0, 1)

v

When S; is driven by some factors X; we obtain
Plr>t](Xs)ozs<t] = St

Two filtrations

» F; = all the information about X; up to time t
» G; = F; and whether default occurred by time ¢t

v



The linear framework

Specification
Model directly the survival process S;! Linear drift

dS; = —~ " Xedt — dM?
dX; = (8S: + BX;)dt + dM

7,8 € R™ B € R™™ F,-martingales M € R and MX € R™

Conditions to verify
> non-increasing process: —v ' X;dt — de <0

> positive process: Sy > 0

When M7 = 0 the default intensity is given by

T
)\1_- — r}/ Xt
St




One-factor model

Set m=1, M? =0, and M such that X; € [0, 5]
dSt == —’}/Xtdt
dXt = (ﬁSt + BXt)dt + o/ Xt(St — Xt)th

Conditions are verified by construction for any v > 0
» dS; < 0since Xy >0
» S, > e 7 > 0since \s = 75—)? € [0,7]

Lemma

The process (St, X:) is well-defined if and only if

>0 and (y+B+p5)<0



One-factor model I

Inward pointing condition
The state space of the process (S¢, X¢) is of the form

(1,0) (1,1)

dX

—

dX
ds

2]

(0,0)



One-factor model Il
The default intensity has an autonomous dynamics

d)\t = (61 — >\t)(>\t — 62) dt + g\/ )\t(’)’ — )\t) th

One-factor affine default intensity model
dAt = L(A\e — 01) dt + o/ A AW,

Drift Diffusion




The linear hypercube model

Polynomial diffusion (Filipovi¢ and Larsson 2016) with state space
E={(s,x) e R"™:s€(0,1] and x € [0,5]™}
The process dynamics rewrites

dSt g —’)/TXt dt
dX; = (BS: + BX;) dt + £(S¢, X¢) dW,

with X (s, x) = diag (O']_\/Xl(s —X1)y -y Omy/Xm(s — xm))
The default intensity satisfies 0 < A\, < '1

Lemma

The process (Xt, St) is well defined if and only if

Bi—> By 20 and i+ Bi+Bi+) (y+Byt <0
JF J#i
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Defaultable bond

Assume henceforth constant risk-free interest rate r
Security B pays one if 7 > T and zero otherwise

Bz(ta T) = ]l{T>t}E |:e_r(T_t)]l{7'>T} |gt:|

=1nE [e_r(T_t)zT |-7'—t}
t

e —r(T—t)

S
= H{T>t}T¢Z(tv T)T <Xz>

with the vector 1z(t, T)T = (1;0,) e 7=t which follows from

E [(f;) !Ft] — AT—1) (fé) with A= <g _;T>

Affine models require (numerical) resolution of ODEs



Contingent cash-flow

Security CP paysone at 7 ifandonlyif t <7 < T
CD(ta T)= ]l{T>t}E [H{t<r<T}e_r(T_t) | gt}

T
= ]1{7->t}/ e_r(s_t)dﬂD [7’ <Ss ’ gt]
t

T TXs
= ]l{'r>t}/ o~ Tt |:75t ’Ft:| ds
t

1 S.
= ]]‘{T>t}§th(t7 T)T (Xi“)

with the vector ¢p(t, T)T = (0 ) A7t (eA(T—1) —1d) and
the matrix A, = A—1dr

Affine models require numerical integration



Credit default swap

Protection against firm default over the period (T, T) in
exchange of premium payments until default or maturity

VCDS(ta To, T, k) = Vprot(ta T07 T) — k Vprem(ta TOa T)
With constant recovery rate R, protection leg and premium leg are

linear combinations of contingent bonds and cash-flows

1 S
VCDS(ta T07 T? k) = ]]'{T>t}§1/)CDS(t7 T07 Ta k)T <Xi>
t

where the vector ¥cps(t, To, T, k) is explicit

Bonds and CDS prices do not depend on M? and M
= Some flexibility in modelling unspanned factors
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Model specification and data
A LHC cascading structure (LHCC)
dS; = —y1 Xqedt
dXie = Ki(0;X(i11)e — Xie) dt + 07/ Xie(Se — Xie) dWe
dXme = Km(OmSt — Xmt) dt + Tmy/Xme (St — Ximt) dWne
Three fits: m € {2,3}, and m = 3 with v; = 25%
Data

1-year to 10-year CDS spreads on J.P. Morgan, r = 2.53%.

300 [ ] :
10| o
200| ‘ . 20| ol
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100 -
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Filtered fitted factors

LHCC(2) LHCC(3) LHCC(3)*
1+ ‘ 8 1+ ! ] 1F 7
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Fitted spreads and errors

LHCC(2) LHCC(3) LHCC(3)*

300 ‘
200 - 1 F N 1 F ‘ .
|

|
100 - AR ‘\m— -

Model spreads

O | 1 | 1
Jan05 JanlO Janlb5 Jan05 Janl0 Janl5 Jan05 Janl0 Janlb
T T T T T T T

15 1t 1t .

10 - 1t 1t |

0 | |
Jan05 Janl0 Janlb5 Jan05 JanlO0 Janl5 Jan05 Janl0 Janlh

RMSE

specification / RMSE all 1yr 2yrs 3yrs 4yrs 5yrs Tyrs 10yrs

two-factor 5.08 4.30 459 536 6.19 598 267 5.71
three-factor 2.53 193 256 236 270 3.65 221 1.86
three-factor & v =25% 3.77 248 225 359 5.03 477 243 4.73
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Single-name Europ. CDS Option

CDSO(t, To, T, k) =E [e*'(T"*t) Veps(To, To, T, k)T ’gt}

efr(Toft) n
= 1{T>t}TE [Z(To, T, k)" |

. S
with Z(To, T, k) = veps(To, To, T,K) ™ (X2 ).

LHC model takes values on a compact support
Z(To, T, k) € [a, b] and analytic moments E [Z(To, T, k)" | F¢]

Price approximation

Polynomial series p,(z) converging to (z)* on [a, b], then
E [p"(Z(To. T.0) | F —— B [Z(To, T.)* | 7]

with non-tight error upper bound ||p"(z) — (2)*]|, on [a, b]



CDSO price approximates
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Conclusion

» New class of reduced form models for credit-risk

v

Model directly the survival process S; = P[7 > t | F¢]

v

Analytical formulas for defaultable bond and CDS prices

v

Accurate CDS option price approximation (LHC model)

v

Promising directions: multi-firm models, XVA, ...
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Near-zero short-term interest rates
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Contribution

> Existing models that respect zero lower bound (ZLB) on interest
rates face limitations:

» Shadow-rate models do not capture volatility dynamics
» Multi-factor CIR and quadratic models do not easily
accommodate unspanned factors and swaption pricing

» We develop a new class of linear-rational term structure models

» Respects ZLB on interest rates
» Easily accommodates unspanned factors affecting volatility and

risk premia
» Admits analytical solutions to swaptions

> Extensive empirical analysis

» Parsimonious model specification has very good fit to interest
rate swaps and swaptions since 1997

» Captures many features of term structure, volatility, and risk
premia dynamics.
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State price density

v

Filtered probability space (2, F, F¢, P)

v

State price density: positive process (¢

v

Model price at t of any claim Cy maturing at T
1
n(t,T)= ZE [CTCr | Fi
t

This gives an arbitrage-free price system.

v

Relation to short rate r; and pricing measure QQ:

Ct _ —ftrsds dQ
<0 =€ 0 X dP|]:t



Factor model

» Factor process Z with range E C R™ and linear drift:
dZ; = k(0 — Z;) dt + d Mg,
where k € R™™ 0 € R™, M, is a martingale.
» Specify state price density as linear in Z;
G=e (¢+v"Z)
where a € R, ¢ € R, ¥ € R™, such that

¢p+19'z>0 onkE



Linear-rational term structure

Lemma 12.1.
The Fy-conditional expectation of Z1 is

E[Zr | F)=0+e "T"0(Z, - 0)

= Linear-rational zero-coupon bond prices

P(t,T)=F(T —t,Z)

where
car TV O+ YT e (2 0)
F _ aT
(T’ Z) € ¢ _|_ wTZ
= Linear-rational short rate
wTK] (9 — Zt)

= —0rlogP(t, T)|72t = a —
re Tlog P(t, T)|7=t = a A



Choice of «
Define

. YTk (0 - 2) YT R0 - 2)
CTR ez M T T

v

Should arrange so that o* < oo to get ry bounded below

v

With a = o, we get

re € [0, " — ]

v

For the model to be useful, this range must be wide enough

v

If eigenvalues of k have nonnegative real part then

. 1
lim —
T—o0 —t

log P(t, T) =« infinite maturity ZCB yield



Unspanned stochastic volatility

» Empirical fact: volatility risk cannot be hedged using bonds

» Collin-Dufresne & Goldstein (02): Interest rate swaps can
hedge only 10%-50% of variation in ATM straddles
(a volatility-sensitive instrument)

» Heidari & Wu (03): Level/curve/slope explain 99.5% of yield
curve variation, but 59.5% of variation in swaption implied vol

» Phenomenon is called Unspanned Stochastic Volatility (USV)

» Fact: nonnegative exponential-affine term structure models
cannot (generically) produce USV



Spanned vs. unspanned factors

» Recall factor dynamics
dZt = K (9 — Zt) dt + th
» Linear-rational ZCB prices P(t, T) = F(T — t, Z;) where

car OO+ T (2 - 0)
¢+1pTz

F(r,z)=e

= F(r,z) depends on drift of Z; only
= Specify exogenous factors U; feeding in martingale part of Z;

= U; unspanned by term structure, give rise to USV



Term structure factors

» The term structure kernel U is defined as orthogonal
complement in R™ to factor loadings of the term structure

U= ﬂ ker V,F(, 2)
>0, z€E

Theorem 12.2.

. 1L

1. Identity U = span {1/1, KT, ..., n(’”*l)ﬁp}

2. After dimension reduction if necessary we can assume
U = {0}, such that Z; become term structure factors

3. Term structure F(7, z) injective if and only if U = {0}, k is
invertible, and ¢ + 176 # 0



Interest rate swaps

v

v

v

v

Exchange a stream of fixed-rate for floating-rate payments

Consider a tenor structure

To<Ti < - <T,,

AT, i=1...n

» pay Ak, for fixed rate k
> receive floating LIBOR AL(T;_4,

Value of payer swap at t < Ty

Ny = P(t, To) — P(t, T

Ti—Tii=A

T) = prmy — L

floating leg

P(t, To)—P(t,T,)

Forward swap rate S; = AST P(eT)
i=1 ol

)_Akip(thl)

fixed leg



Swaptions

>

Payer swaption = option to enter the swap at Ty paying fixed,
receiving floating

Payoff at expiry Ty of the form

+
swa 1
CTg rl p <§ CI T07 > = CT pswap(ZTg)+
0

for the explicit linear function
n
pswap(z) = Z Cie_aﬂ ((b + 'l/}Te + wTe_K(Ti_TO)(Z - 9))
i=0

Swaption price at t < Ty is given by

1
Z]Et [pswap(ZTg)+]

Efficient swaption pricing via Fourier transform ...!

swaption 1
MEerton = aE[CToCTo | Fe] =



Fourier transform

> Define
a(X) =E; [eXP (X Pswap(ZTo))]

for every x € C such that the conditional expectation is well-defined

i 1o [q(p+i))
rlswaptlon _ 7/ R |: d\
‘ Cem Jo ¢ (1 +1iA)?

for any g > 0 with g(p) < o0

» Then

> ¢(x) has semi-analytical solution in LRSQ model
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The Linear-Rational Square-Root (LRSQ) model
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Linear-

v

v

v

v

v

Rational Square-Root (LRSQ) model

Objective: A model with joint factor process (Z;, U;), where

» Z:: m term structure factors
» U;: n < m USV factors

Denoted LRSQ(m,n)

Based on a (m + n)-dimensional square-root diffusion process X;
taking values in R7*" of the form

dX; = (b — 8X,)dt + Diag (alx/Xlt, . ,am+m/xm+n,t) dB,,

Define (Z;, U;) = SX; as linear transform of X;
Need to specify a (m+ n) X (m+ n)-matrix S such that

» the implied term structure state space is E = R}
» the drift of Z; does not depend on U, while U; feeds into the
martingale part of Z;



Linear-Rational Square-Root (LRSQ) model (cont.)

> S given by

Id, A . _( Id,
5—( 0 Idn) WlthA—< 0 )

» (3 chosen upper block-triangular of the form

o1 (K 0 _(r RA—AATLA
p=5 <0 AT/;A>5<O ATLA

for some x € RM*m

el [0\ (10— AAT LAy
b_ﬁs (HU o AT/{AQU

for some 6 € R™ and Ay € R".

> b given by



Linear-Rational Square-Root (LRSQ) model (cont.)

> Resulting joint factor process (Z;, U;):
dZt =K (9 — Zt) dt + O'(Zt, Ut)dBt
AU, = ATkA(0y — U,) dt + Diag (J,,,H\/Ult dBmst, . .. ,amﬂ\/umdsmﬂ,t) ,

with dispersion function of Z; given by
0(27 U) = (Idma A) Dlag (01 VZi — Ui, ... 70',-,,+,—,\/U7,1)
> Example: LRSQ(1,1)

dZi: = HZ(Q — th) dt + o1/ Z1: — U1:d Byt + 02/ U1:d By

dUy: = H(@U — Ult) dt + oo/ U1:d By



Example: LRSQ(3,1)




Example: LRSQ(3, 2)




Example: LRSQ(3,3)

o1Vz1 — ug oa/U1 0 0
0 0 o5/l 0
0 0 0 06+/U3
0 oa+/U1 0 0
0 0 0 T5+/U2 0
0 0 0 0 06+/U3



Linear-rational vs.

exponential-affine framework

Exponential-affine

Linear-rational

Short rate

ZCB price

ZCB yield

Coupon bond price
Swap rate

ZLB

Usv

Cap/floor valuation
Swaption valuation
Linear state inversion

affine
exponential-affine
affine
sum of exponential-affines
ratio of sums of exponential-affines
)

)
semi-analytical
approximate
ZCB yields

LR
LR
log of LR

LR

LR

v

v
semi-analytical
semi-analytical

bond prices or swap rates
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Linear-rational vs. exponential-affine framework: MPR

Exponential-affine model:
P(t, T) = AT—04B(T—)" Z

» Z; square-root diffusion under risk-neutral measure Q

> Market price of risk A\; determining Z% exogeneous

LRSQ model:

—a(T—t) 1+1760+ 1T67K(T7t)(zt —0)

P(t,T) =
(7) € 1+].th

» Z; square-root diffusion under historical measure P

> Market price of risk A\; determining % endogenous

Linear-Rational Term Structure Models [Filipovi¢ et al., 2014]
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Linear-rational vs. exponential-affine framework: MPR

Exponential-affine model:
P(t,T) = AT—0)+B(T—1) " Z,

» Z; square-root diffusion under risk-neutral measure Q

> Market price of risk A\; determining Z% exogeneous

LRSQ model:

—a(T—t) 1+170+ lTe_H(T_t)(Zt —0)

P(t,T)=¢e 117z

» Z; square-root diffusion under auxiliary measure A

> Market price of risk \; determining ‘Cj,% = Z%‘Z,—% exogenous

Linear-Rational Term Structure Models [Filipovi¢ et al., 2014]



Extended state price density specification

> Linear state price density specification: market price of risk

o(Z:, Ut)Td)

A = — .
‘ b+ 97T Z

> Alternatively, develop model under auxiliary measure A:

» State price density: (& =e (¢ + ' Z)
» Factor process dynamics: dZ, = x(0 — Z;)dt +dMA
» Basic pricing formula: M(t, T) = E2 [(3Cr] /¢E

» Extended state price density specification
t
¢F = CPEY [dA/dP] = ¢ € ( / 5:dgf)
0

with (Alvarez & Jermann (2005), Hansen & Scheinkman (2009))

» transitory component ¢
» permanent component E! [dA /dP]



Extended state price density specification

> Market price of risk now given by

U(Zt7 Ut)T’l/)

Ap = —
' ¢+ 9T Z

+ 0t

» In LRSQ model: no additional unspanned risk premium factors

51.‘ = (61 V X1t7 sty 5m+n\/myr

> A is long forward measure:

CeP(t,T) ¢ +Er[p Zr]
PO, T)  ¢+EAyTZ7]

—1 as T — o

Hence deflating by (/¢4 amounts to discounting by gross return

on long-term bond limr_, %

It also implies that the long-term bond is growth optimal under A
(Qin & Linetsky 2015)
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Empirical analysis
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Data and estimation approach

» Panel data set of swaps and swaptions

» Swap maturities: 1Y, 2Y, 3Y, 5Y, 7Y, 10Y

» Swaptions expiries: 3M, 1Y, 2Y, 5Y

> 866 weekly observations, Jan 29, 1997 — Aug 28, 2013

» Estimation approach: Quasi-maximum likelihood in conjunction
with the unscented Kalman Filter

Panel Al: Swap data Panel B1: Swaption data
0.08 250
0.06 200
150
0.04
100
0.02 50
0 0
Jan97  Jan01 Jan05 Jan09 Janl3 Jan97 Jan01 Jan05 Jan09 Janl3
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Model specifications

> Model specifications (always 3 term structure factors)

» LRSQ(3,1): volatility of Z;; containing an unspanned
component

» LRSQ(3,2): volatility of Z;; and Zy; containing unspanned
components

» LRSQ(3,3): volatility of term structure factors containing
unspanned components

> o = «a* and range of r;:

LRSQ(3,1) | LRSQ(3.2) | LRSQ(3.3)

Long ZCB yield 7.46% 6.88% 5.66%

Upper bound on r; 20% 146% 72%



Level-dependence in factor volatilities

> Volatility of Z; with USV: /02 Z; + (025 — 0?)Uj
» Volatility of Z; without USV: o;v/Z;;

LRSQ(3,1) LRSQ(3.2) LRSQ(3.3)

0.02 x| 00sf
0.015 0.06

0.01 0.04

0.005 0.02

0 0 0
0 0.5 1 0, 0.05 0.1 015




Fit to data, LRSQ(3,3)

Pancl AL: Swap data Pancl BL: Swaption data
0.08 250
0.06 200
150
0.04
100
0.02 50
0 0
Jan97  Jan01 Jan05 Jan09 Janl3 Jan97  Jan01  Jan05 Jan09 Janl3
Panel A2: Swap fit, LRSQ(3,3) Panel B2: Swaption fit, LRSQ(3,3)
0.08 250
0.06 200
150
0.04
100
0.02 50
0 0
Jan97  Jan01 Jan05 Jan09 Janl3 Jan97  Jan01 Jan05 Jan09 Janl3
Panel A3: Swap RMSE, LRSQ(%.3) Panel B3: Swaption RMSE, LRSQ(3,3)
20 20
15 15
10 10
5 5
00— 0
Jan97  Jan01 Jan05 Jan09 Janl3 Jan97  Jan01  Jan05 Jan09 Janl3

N
=1
N
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Short-rate dynamics near the ZLB

> Conditional density of r; given ry < 25bps, LRSQ(3,3)

Panel A: Conditional dist., 1 yr Panel B: Conditional dist., 2 yrs

08 058
07 07
0.6 0.6
05 05
04 04
03 03
02 02
0.1 0.1

0 0

0 001 002 003 004 005 0 001 002 003 004 005

Panel C: Conditional dist., 5 yrs Panel D: Mean and median
0.8 0.015
07 —— Mean
- - - Median
0.6
0.01
05
04
03 _
0.005

02
0.1

0 0 o

0 001 002 003 004 005 0 1 2 3 1 5

Horizon (yrs)



Volatility dynamics near the ZLB

> Level-dependence in volatility, 3M/1Y IV vs. 1Y rate

250

N

S

=]
T

15
S
T

100

3M normal implied volatility, basis points

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
1Y swap rate



Level-dependence in volatility

> Regress weekly changes in the 3M swaption IV on
the swap rate

AO'N,t = Bo+ 51A5t + €

weekly changes in

1yr 2yrs  3yrs Syrs  Tyrs 10yrs  Mean

Panel A: By

All 0.18** 0.16*** 0.16** 0.16** 0.16™* 0.16"* 0.16
(2.38) (2.88) (3.31) (4.12) (4.59) (4.97)

0%-1% 1.20* 0.74**  0.62"* 0.48"* 0.76
(8.03) (8.79) (8.19) (7.83)

1%-2% 0.54™* 0.64™ 0.46™* 0.52** 0.45™* 0.26"* 0.48
(2.70) (6.21) (6.77) (5.02) (5.23) (8.24)

2%-3% 0.28* 0.11**  0.30** 0.36** 0.40™* 0.40** 0.31
(3.10) (1.97) (3.77) (5.08) (5.62) (4.93)

3%-4% —0.02 0.11 0.06 0.05 0.11* 0.17* 0.08

(~0.22) (1.21) (0.92) (0.80) (1.82) (1.96)

4%-5% 0.04 —0.07 0.01 0.08 0.07* 0.07* 0.03
(0.31)  (-0.82) (0.08) (1.59) (1.76) (1.65)

Panel B: R?

All 0.05 0.06 0.08 0.10 0.11 0.10 0.08

0%-1% 0.52 0.54 0.54 0.44 0.51

1%-2% 0.25 0.49 0.45 0.55 0.55 0.27 0.43

2%-3% 0.16 0.06 0.28 0.37 0.44 0.45 0.29

3%-4% 0.00 0.03 0.01 0.01 0.07 0.12 0.04

4%-5% 0.00 0.01 0.00 0.03 0.03 0.03 0.02
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Level-dependence in volatility

> Regress weekly changes in the 3M swaption IV on
the swap rate

AO'N,t = Bo+ 51A5t + €

weekly changes in

1yr 2yrs 3 yrs 5 yrs 7 yrs 10 yrs Mean

Panel A: By

All 0.18** 0.16™** 0.16** 0.16** 0.16™* 0.16"* 0.16
(2.38) (2.88) (3.31) (4.12) (4.59) (4.97)

0%-1% 1.20* 0.74**  0.62** 0.48"** 0.76
(8.03) (8.79) (8.19) (7.83)

1%-2% 0.54™* 0.64™  0.46™* 0.52** 0.45™* 0.26"* 0.48
(2.70) (6.21) (6.77) (5.02) (5.23) (8.24)

2%-3% 0.28* 0.11**  0.30** 0.36** 0.40™* 0.40** 0.31
(3.10) (1.97) (3.77) (5.08) (5.62) (4.93)

3%-4% —0.02 0.11 0.06 0.05 0.11* 0.17* 0.08

(~0.22) (1.21) (0.92) (0.80) (1.82) (1.96)

4%-5% 0.04 —0.07 0.01 0.08 0.07* 0.07* 0.03
(0:31)  (~0.82) (0.08) (1.59) (1.76) (1.65)

Panel B: R?

All 0.05 0.06 0.08 0.10 0.11 0.10 0.08

0%-1% 0.52 0.54 0.54 0.44 0.51

1%-2% 0.25 0.49 0.45 0.55 0.55 0.27 0.43

2%-3% 0.16 0.06 0.28 0.37 0.44 0.45 0.29

3%-4% 0.00 0.03 0.01 0.01 0.07 0.12 0.04

4%-5% 0.00 0.01 0.00 0.03 0.03 0.03 0.02
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Level-dependence in volatility, LRSQ(3,3)

0.8

0.4

0.2

0.2

Panel A: §; in data

Al

0%-1%

Panel C: R? in data

0.4

Panel B: Model-implied £,

Panel D: Model-implied R?




Unconditional excess returns

» Unconditional 1M excess ZCB returns, % annualized

1yr 2yrs  3yrs  Syrs  Tyrs 10 yrs

Data Mean 0.58 1.56 2.39 3.61 4.46 5.43
Vol 0.71 1.72 2.82 4.96 6.96 9.86

SR 0.82 0.91 0.85 0.73 0.64 0.55

LRSQ(3,1) Mean 0.37 0.74 1.10 1.77 2.39 3.21
Vol 0.57 1.28 2.14 4.02 5.83 8.19

SR 0.64 0.58 0.51 0.44 0.41 0.39

LRSQ(3,2) Mean 0.37 0.70 1.01 1.60 2.14 2.83
Vol 0.53 1.21 1.97 3.54 5.04 7.08

SR 0.69 0.58 0.51 0.45 0.42 0.40

LRSQ(3,3) Mean 0.25 0.58 0.91 1.53 2.04 2.63
Vol 0.57 1.19 1.92 3.51 5.06 7.21

SR 0.43 0.48 0.47 0.44 0.40 0.36

LRSQ(3,3),8, =0  Mean  -0.03 0.01 0.10 0.34 0.60 0.97
Vol 1.01 1.71 2.35 3.75 5.23 7.31

SR -0.03 0.01 0.04 0.09 0.11 0.13
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Unconditional excess returns

» Unconditional 1M excess ZCB returns, % annualized

1yr 2yrs  3yrs  Syrs  Tyrs 10 yrs

Data Mean 0.58 1.56 2.39 3.61 4.46 5.43
Vol 0.71 1.72 2.82 4.96 6.96 9.86

SR 0.82 0.91 0.85 0.73 0.64 0.55

LRSQ(3,1) Mean 0.37 0.74 1.10 1.77 2.39 3.21
Vol 0.57 1.28 2.14 4.02 5.83 8.19
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Vol 0.53 1.21 1.97 3.54 5.04 7.08
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Conditional expected excess returns

> Regress Rf, | = Bo + BsipSlpt + Bvor Voli + €r41

> Slp;: slope of swap term structure (standardized)

> Vol;: 1M swaption IV (standardized)

1 yr 2 yrs 3 yrs 5 yrs 7 yrs 10 yrs

Data Bsiy  —0.025  —0.009 .027 0.092 0.121 0.166
(-1.548)  (=0.215) (0.403) (0.838) (0.845) (0.832)

/éVot 0.058* 0.114** 0.144*  0.169 0.206 0.210

(4.459) (3.409) (2.506) (1.546) (1.395) (0.963)

R? 0.102 0.051 0.037 0.025 0.020 0.013

LRSQ(3,1) /95,,, 0.004 0.003  -0.004  -0.032  -0.065  -0.102
Byl 0.012 0.017 0.026 0.058 0.096 0.148

R? 0.007 0.003 0.002 0.002 0.003 0.004

LRSQ(3,2) ;’9_91,, 0.000 0.002 0.008 0.018 0.021 0.014
Byl 0.016 0.033 0.049 0.072 0.088 0.112

R? 0.011 0.009 0.008 0.005 0.004 0.003

LRSQ(3,3) ﬁ.s'lp 0.025 0.038 0.046 0.055 0.059 0.059
B 0.031 0.054 0.074 0.112 0.143 0.182

R? 0.082 0.054 0.035 0.020 0.014 0.010

LRSQ(3.3), 6, =0 /95,,, -0.002  -0.001 0.001 0.006 0.010 0.015
Bvor  -0.004  -0.002 0.005 0.026 0.049 0.080

R? 0.000 0.000 0.000 0.001 0.001 0.001
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Conditional expected excess returns

> Regress Rf, | = Bo + BsipSlpt + Bvor Voli + €r41

> Slp;: slope of swap term structure (standardized)

> Vol;: 1M swaption IV (standardized)

1 yr 2 yrs 3 yrs 5 yrs 7 yrs 10 yrs

Data Bsip  —0.025  —0.009 0.027 0.092 0.121 0.166
(-1.548)  (~0.215) (0.403) (0.838) (0.815) (0.832)

Byl 0.058* 0.114** 0.144*  0.169 0.206 0.210

(4.459) (3.409) (2.506) (1.546) (1.395) (0.963)

R? 0.102 0.051 0.037 0.025 0.020 0.013

LRSQ(3,1) /95,,, 0.004 0.003  -0.004  -0.032  -0.065  -0.102
Byl 0.012 0.017 0.026 0.058 0.096 0.148

R? 0.007 0.003 0.002 0.002 0.003 0.004

LRSQ(3,2) ;’9_91,, 0.000 0.002 0.008 0.018 0.021 0.014
Byl 0.016 0.033 0.049 0.072 0.088 0.112

R? 0.011 0.009 0.008 0.005 0.004 0.003

LRSQ(3,3) ﬁszp 0.025 0.038 0.046 0.055 0.059 0.059
ﬁVol 0.031 0.054 0.074 0.112 0.143 0.182

R? 0.082 0.054 0.035 0.020 0.014 0.010

LRSQ(3.3), 6, =0 /95,,, -0.002  -0.001 0.001 0.006 0.010 0.015
Bvor  -0.004  -0.002 0.005 0.026 0.049 0.080

R? 0.000 0.000 0.000 0.001 0.001 0.001
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Conclusion

> Key features of framework:

» Respects ZLB on interest rates

» Easily accommodates unspanned factors affecting volatility and
risk premia

» Admits semi-analytical solutions to swaptions

> Extensive empirical analysis:

» Parsimonious model specification has very good fit to interest
rate swaps and swaptions since 1997

» Captures many features of term structure, volatility, and risk
premia dynamics.
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