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1 Introduction

The pricing of American options has always required numerical solution
methods; in high-dimensional cases even the most sophisticated methods
have difficulty in providing accurate solutions. Given the practical impor-
tance of such cases, it is of considerable interest to develop solution methods
which are reliable and which provide accompanying exercise and hedging
strategies.

1.1 Literature

Barraquand and Martineau [1] are perhaps the first to consider pricing high-
dimensional American options specifically. They propose an algorithm based
on aggregation of paths with respect to the intrinsic value, which was an
improvement over the earlier Tilley [20] method which required aggregation
with respect to the state. The method is difficult to analyse and has a
possible lack of convergence; Boyle et al. [2] demonstrate this and propose
a modification of the algorithm which leads to a low-biased estimator.

Broadie and Glasserman [5] use a stochastic tree algorithm to give both
a low-biased and a high-biased estimator of the price, both asymptotically
unbiased. They also argue that there exists no nontrivial unbiased estimator
for the price. Their method requires an exponentially increasing amount of
work in the number of exercise opportunities, but obtaining estimates for
an increasing number of exercise opportunities sometimes allows one to use
Richardson extrapolation to find a more accurate estimate. In a subsequent
working paper [6] they present a related method based on a stochastic mesh
which does not suffer from this problem, although this method has been
found to be slow by several authors and to have a large finite-sample bias
(see e.g. Fu et al. [9]).

The “simple yet powerful” least squares Monte Carlo (LSM) method
of Longstaff and Schwartz [14] attempts to approximate the price of an
American option using cross-sectional information from simulated paths.
The optimal exercise strategy is successively approximated backwards in
time on the paths by comparing the intrinsic values to the continuation
values projected onto a number of basis functions over the states. This
is done for in-the-money paths only since out-of-the-money paths should
never be exercised. Experimental success is reported for the LSM method,
although in high dimensions the basis functions must be chosen carefully.
Recently Clément et al. [7] and Stentoft [19] independently provide proofs of
convergence for the LSM method, showing that the convergence is \/n in the



number of paths used. The convergence behaviour in the number of basis
functions however has not been determined. Stentoft [18] and Moreno and
Navas [15] test the LSM algorithm numerically. Stentoft suggests that basis
functions up to order three are sufficient in five dimensions for arithmetic
and geometric average options, but not for minimum or maximum options.
Moreno and Navas find that the method is not robust to the choice of basis
functions in five dimensions.

Tsitsiklis and Van Roy [22] propose a method similar to LSM where
approximate value functions are projected onto an orthogonal set of basis
functions, the orthogonality being with respect to a suitably chosen inner
product which in general changes between time periods. They provide a
proof of convergence but no empirical results. The method differs from LSM
in that the projection is used to determine an approximate value function
rather than an exercise rule.

Boyle et al. [4] recently extended the stochastic mesh method of Broadie
and Glasserman [6] with their low discrepancy mesh (LDM) method. This
involves generating a set of low discrepancy interconnected paths and using
a dynamic programming approach to find prices on the mesh.

An interesting alternative approach is proposed independently by Rogers
[17] and Haugh and Kogan [11]. They use a dual formulation of the prob-
lem in which a minimisation is performed over martingales. The method is
sensitive to the choice of basis martingales chosen to perform the minimisa-
tion, and so requires the basis to be well-chosen in order to give an accurate
solution. The method gives a high-biased estimator.

The work of Glowinski et al. [10] on variational inequalities is also in-
teresting to note in this context, providing a firm footing for analysing the
American option pricing problem in complete markets. Jaillet et al. [12]
consider American options using this framework, providing a convergence
proof for the Brennan-Schwartz algorithm® in one dimension.

1.2 Ouwur approach

We propose a new approach to solving the American option pricing problem
inspired by the success of numerical integration in high dimensions and
related to the method of lines for solving PDEs.

We first perform a discretisation of the state space using QMC trials
with respect to an importance sampling distribution related to the transition
density of the process at expiry. We then propose an approximation to the
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partial differential operator (PDO) on this grid by taking the logarithm of a
transition probability matrix P('~% which approximates the joint density of
the underlyings at the expiry of the option, T'—¢. This approximation is then
used to formulate linear complementarity problems (LCPs) at successive
time points starting from the option expiry.

In our method the matrix logarithm of P(T=% does not need to be cal-
culated explicitly, but instead a root of the matrix must be calculated. The
computational elements of the method are thus the QMC trials, the genera-
tion of the matrix P(T=?, the matrix root and solving an LCP at each time
step.

For approximating the European option price this method amounts to
performing a numerical integration with importance sampling, which is
known to be an efficient method in high dimensions as long as the impor-
tance sampling distribution is chosen appropriately. Traub et al. [21] show
this and also study the theoretical efficiency of many other problems in high
dimensions.

2 Formulation

2.1 The market

We consider a complete and arbitrage-free market described by state variable
X (s) € RN for s € [t, T] which follows a Markov diffusion process

dX(s) = p(X(s),s)ds + o(X(s),s)dW (s) (1)

with initial condition X (¢) = z;, and a derivative product on X(s) with
exercise value (X (s),s) at time s and value V(s) = v(X(s),s) for some
pricing function v(z, s). The process V(s) satisfies

dV (s) = pv(X(s),s)ds + oy (X(s),s)dW (s) (2)

where py and oy can be expressed in terms of 4 and ¢ by means of Itd’s
lemma. The terminal value is given by v(-,T) = (-, T).

The objective is to determine the current value v(zy,t) of the derivative
product and the accompanying adapted exercise and hedging strategies 7
and H:

7:RY x [t,T] — {0,1} (3)
H:RY x[t,T] — RN (4)



Supposing that one has an estimate V(t) of the derivative price, one
must also provide an exercise rule 7 or a hedging strategy H in order for
the buyer or seller respectively to be able to realise the estimated price.

2.2 Pricing
2.2.1 The primal formulation

The value of the derivative product is formulated in the primal problem as
a supremum over stopping times

v(w,t) = supEL (e Dy(X (7)) (5)
TET

where T is the set of stopping times on [¢t,T] with respect to the natural

filtration, the expectation is taken with respect to the risk-neutral measure
@, and the initial value is z4.

2.2.2 The dual formulation

The dual formulation (see Rogers [17] or Haugh and Kogan [11]) forms a
price by minimising the cost of the hedging strategy over equivalent martin-
gale measures. Theorem 1 of [17] implies that the price is given by

vo,t) = inf B [sup (e-T‘(s-tw(X(s))—M(s))] (6)

MeH} se[t,T]

where H{ is the space of martingales with M (0) = 0 and supgep ) | M (s)] €
L'. The infimum is attained by taking M = M*.

2.2.3 The variational inequality formulation

Formulating the problem as a variational inequality invites implications from
the large number of results that have been developed in this field, for example
the work of Glowinski et al. [10]. Jaillet et al. [12] applied this approach to
the analysis of American option pricing.

One must first define an elliptic operator £ giving the diffusion of the
process. This is given by

L= ttroo' — —0\) == — 7
2raax+(u 0):1; r (7)



where 7 is the riskfree rate and X : [t, T]xRY — R is the function satisfying
Py — 10 = oy . (8)

One must also specify a function space in which to work. Briefly one
defines an inner product (-, -) and a bilinear form a(-,) on the Hilbert space
H' satisfying

a(v,u) = (u, Lv) (9)

The equivalent variational inequality formulation is then to find v(z, t)
such that

v(z,s) —(z,s) = 0
10
u > 1) a.e. éa(v,u—v)—i—(u—v,%) > 0 ae [t,T] 1)

for (z,s) € RN x [t,T] with the terminal condition v(-,T) = 4 (-,T).

2.2.4 The complementarity formulation

The variational inequality formulation is not amenable to computation; for-
tunately it can be reformulated as a complementarity problem. Let £ be
the related diffusion operator; then the option value is found by solving the
complementarity problem

%-FEU <
v > 0 (11)
(%—I—Ev)(v—zp) =0

for (z,s) € RN x [t,T] with the terminal condition v(-,T) = 4 (-,T).

2.3 Consequences

In solving the pricing problem we divide the time-state space into two com-
plementary regions: the continuation region where it is optimal to hold the
option and the stopping region where it is optimal to exercise. In the con-
tinuation region the first line of (11) is active and the stopping rule says not
to exercise. In the stopping region the second line of (11) is active and the
stopping rule says to exercise.

In all formulations presented, high dimensionality poses a practical prob-
lem since functional approximation in a high-dimensional space is called for.
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Figure 1: Generic grid framework for American option pricing schemes

3 Framework for pricing American options

If we are to solve the American option pricing problem numerically, it seems
reasonable that we should first try to reduce the dimensionality of the prob-
lem. This is the approach taken by numerical methods for solving PDEs.
For example finite difference methods approximate the value function at
certain times and a finite number of states, and finite element methods use
a finite number of localised basis functions.

We will approach the pricing problem from the finite difference point
of view, that is we will choose a discretisation of the time-state space on
which to form approximations of the value function. Traditional finite el-
ement methods, which are popular when complex geometries are involved,
do not seem attractive in a high dimensional setting due to the difficulty in
specifying tractable elements. The sparse grid literature initiated by Zenger
[24] is nonetheless encouraging in this context.

We also emphasise that the solution to the American option pricing
problem is not complete without an accompanying set of rules. For the
holder of an option there must be an exercise rule and for the seller there
must be a hedging strategy. Such strategies are intimately related to the
resulting price.

Suppose we choose a set of timesteps t =y < -+ < tx =T and for each
timestep t a set of states (grid) &y = {2k 1,...,2Zpn} C RM on which to
approximate the solution to (11). This setup is illustrated in Figure 1.

In a traditional finite difference method the grid is constant over time,



and in a finite difference adaptive grid method it changes. We can also
accommodate the stochastic tree, LSM and LDM methods in this context
where the grids contain realisations of sample paths at each timestep. The
difference between the methods is the way in which the grids are generated
and the way in which the continuation values are estimated.

In the stochastic tree method, the grid samples b paths forward in time
from each node (x ,, 1), giving b* nodes in A%. Continuation values are
taken to be the discounted average of the observed continuation values along
the paths emanating forward in time from each node. This is attractive
empirically since at each node we are performing a numerical integration
with b trials, but unattractive from the computational point of view.

In LSM the grids are simply generated from sample paths and the ex-
pected continuation values are estimated by regressing the discounted re-
alised continuation values onto a set of basis functions over the current state
space. The continuation values are determined from the times at which the
paths are stopped, which means all future grids may be used in the calcula-
tion. This method is nice from a computational point of view, but it is not
obvious how many basis functions are required as the dimension increases,
or how those basis functions should be chosen.

In LDM the grids are generated using a low-discrepancy method where
the density of nodes is a mixture of transition densities from each node. The
continuation values are then estimated by taking a weighted average of the
discounted continuation values over all paths at the next timestep.

In most methods the grid reflects the evolution of the stock process, in
that more grid points are concentrated in the main support of the state tran-
sition density. Finite difference methods do not necessarily adhere to this
rule since the solution region is freely specifiable only provided appropriate
boundary conditions are available.

Accurate estimation of expected continuation values in LSM requires
that the stopping times have been accurately calculated without using too
much path-specific information. With the other methods accurate estima-
tion relies on having enough points 1 ; close to the current state z;; (with
respect to the transition density) to give a stable average. In the Broadie
and Glasserman method this issue is addressed directly by placing b points
close to the current point. In other methods using simulated paths there is
clearly one point that is close, with other points being distributed according
to the density of the process. Using these points to do numerical integration
can be like using importance sampling with an ill-conditioned importance
sampling density.



4 An Irregular Grid Method

In the framework of Section 3 we choose to work with a constant grid
X C RN on which to solve the pricing problem. Traditionally constant
grid methods have used regular grids, for example finite difference methods.
However in a high-dimensional problem this is not practical due to the curse
of dimensionality, or efficient in the sense that such a grid is not well adapted
to the SDE.

Specifically we work with a grid generated using MC or QMC trials in
the state space. In particular if the grid is generated with trials distributed
according to the transition density of the process, it is expected that the
representation of the SDE should be accurate in the region of our initial
vector of prices. It is also possible in this setting to directly control the
number of points in the grid.

4.1 Semidiscrete setting

Let us first consider a discretisation of the state space, leaving time continu-
ous. In the pricing problem this amounts to approximating the complemen-
tarity problem (11) by a system of ODEs with complementarity conditions.
This semidiscrete setting, or method of lines, is well suited to our choice of
a constant grid in the state space.

Recall we would like to solve the problem (11). Discretisation of the
state space using grid X requires an approximation of the PDO L on X; let
us call this approximation A.

We now consider the complementarity problem represented by the con-
strained system of ODEs

W(s)+ Av(s) < 0
v(s) =9 > 0 (12)
(L(s) + Av(s)) (v(s) =) = 0

for s € [t,T] with terminal condition v(T) = .

The semi-discrete setting can also be seen as a Markov chain approxi-
mation to the problem; the state is now constrained to move only between
discrete states rather than contiuously.

4.2 Approximating the differential operator

We now propose a method for specifiying A in (12). The method is inspired
by numerical integration, and in the European case the resulting method
will be equivalent to numerical integration with importance sampling.



We assume that the joint density of the process fxt,t(x) is available for
arbitrary initial points x; and time horizons ¢, although in principle one
could adapt the following construction to the case where the density was
not known explicitly, but for example the process could be simulated. Let
g(z) be the density used to generate the grid X.

Denote by P(T—Y the transition probability matrix between points of X
corresponding to the horizon of the option T'—t¢ where the entries (P(T_t))ij
are given by

(T-) _ 1

- = e r—i (x5 13
A >y v Rkl )
and the weights are given by
oo Tt
foir—t(z) = M (14)

g9(z)

We note that the evolution of state probabilities in the semidiscrete set-
ting is given by p(s) = e4'Ip(t) where p(s) is the discrete probability
distribution over our grid at time s and p(t) is the initial probability distri-
bution at time ¢ which will in most cases be a delta function (since the initial
state is known). The matrix PT=1) thus gives us access to an approximation
A to L as follows:

AE log P71, (15)

T—1
The matrix logarithm certainly exists and is unique if P(T'~% is diagonal-
isable and has positive eigenvalues, which we find to be the case in our
experiments (it is not symmetric however). We shall see that it is not ac-
tually necessary to calculate A in our solution method; however it could be
calculated in principle. A was introduced for the purposes of exposition.
In the European case we see that using this approximation reconstructs
the method of numerical integration with importance sampling function g:

vi(t) = Y(x) fo; m—t(7)dT
R

Q

Y 1
LSS e R

= S p)pl "
j=1

where v; is the price in state x; at initial time ¢, and X; are iid random
variables with density g(x). Given the similarity to numerical integration
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we are guided by the literature on importance sampling in our choice of grid
density. In particular, the integration problem is most efficiently solved on
a grid with the same density as the process itself.

Because the European problem is purely one of integration, it is not nec-
essary to have an approximation of the diffusion at intermediate timesteps,
and thus the matrix A need not be considered.

4.3 Fully discrete setting

Let us now discretise (12) along the the time axis. As in Section 3 we work
with the discretisation t =ty < --- < tx =T and a constant grid Xy = X
for all k. We now denote the approximation at state ¢ and timestep k as
Vi = i(tg) = v(wi, ).

As with traditional finite difference methods for PDEs we are free to
choose an implicitness parameter § when discretising the time axis. Suppose
we have obtained an approximate solution for v; ;4 for ¢ = 1,...,n, we
then consider backward recursion methods allowing us to calculate v; for
1=1,...,n.

The derivative with respect to time can be approximated ag 9 ~ 41—V

dt = Tpr1—tr’
and there is some freedom as to whether to substitute v; 5 or v; 11 fok;“r lvi (IZ)
in the recursion. A general method is given by using 6v; y41 + (1 — 8)v; . for
0 € [0,1]. Choosing @ = 0 corresponds to the explicit method, # = 1 corre-
sponds to the implicit method and 6 = % corresponds to the Crank-Nicolson
method. The latter has the best d¢ convergence in solving PDEs.

We discretise the first line of (12) as

SE+D) _ (R

— 9)p(k+1) k)) <
P +A((1 0)oE+D 4 gy )\0 (16)

where 6t £t — t. Thus (12) becomes

(I + (1 —0)Ast) v D) — (I —0Ast) v < 0
o) —p > 0 (17)
((I + (1 — 0)Adt) ok +D) — (1 — 0 46t) v®)) () —p) = 0

Now note that I + Adt = exp{Adt} + o(dt). We thus define the matrices

ML = eXp{—eA(stk} (18)
Mpr = exp{(1—0)Adt;} (19)

11



The approximating complementarity problem to solve is then

Mpo®+1) — ppp oK) 0
0 (20)

o) — 4
(Mpo® — Mpo®+D) (v —y) = 0

WV A

for k = K—1,...,0 where the inequalities are componentwise and v(5) = 4.

An error analysis of the discretisation in (16) may be undertaken along
the lines of Glowinski et al. [12] on variational inequalities or that of Kushner
and Dupuis [13] on stochastic control. We do not carry this out here.

Numerically we must solve a complementarity problem at each timestep,
for which the PSOR method of Wilmott et al. [23] has been used with much
success in the past. Since the solution does not change greatly between
time steps, a good starting guess for PSOR is the solution at the previous
timestep. Various other methods may be used for solving (20), for exam-
ple see Dempster and Hutton [8] for American option pricing using linear
programming in the one-dimensional case.

It is important to note that the matrix logarithm does not have to be
calculated explicitly in our method; instead we must calculate roots of the
matrix P~ corresponding to the timestep and implicitness parameters.
In particular we have

—0dty /(T'—t

M, = P

(Tft)] (1=0)dty, /(T'-1) (22)

Mp = P

It is clearly more efficient if the matrices M; and Mg need be calculated
only once; hence the choice of a constant time step seems convenient.

It is clear that, given a small enough 6t and large enough distance be-
tween grid points, M, and Mg should be approximately sparse in that most
elements can be set to zero without affecting the solution significantly.

Note that in the European case (20) still reconstructs numerical inte-
gration with importance sampling when My and Mp are specified in this
way.

5 Irregular grid for multiasset options

We now present an algorithm for pricing multiasset options using the frame-
work of the previous section.

12



5.1 Setting

Suppose the assets follow a correlated geometric Brownian motion where
the risk-neutral dynamics in the log domain are given by

1
dX = (r]l —0— §diag(2)> dt + R'dW (23)

where r is the risk-free rate, 1 is the N-vector of ones, § = (d1,...,0n) is
the vector of dividend rates, ¥ = (p;j0;0;) is the covariance matrix of the
Brownian motions and R'R is its Cholesky decomposition. The operator £
in this setting is just the multidimensional Black-Scholes operator given by

al 02 al )
/.,':% Zpijaiajm—i—Z(r—éi—%a?)%—r. (24)
ij=1 Lt | ¢

Two grid types are discussed, namely grids with uniform and normal
distributions. We will only consider grid generation using QMC trials, since
this offers considerable efficiency gains over MC. However we do consider
randomised QMC where a number of random QMC grids are generated
using independent MC trials.

Suppose the current vector of prices is given by z; and we wish to cal-
culate v(z¢,t). Let the evolution of log prices be given by (23) where X is
known. Let us choose a parameter « to specify the size of the grid in relation
to the density of the underlying process.

In both cases we consider the grid to be centred about

T+ <r]l . %diag(i])) (T — 1) (25)

which is the most appropriate for numerical integration of the payoff function
at expiry. We would have to be careful if the risk-neutral process were
convection-dominated in which case the SDE before expiry may not be well
represented; a soiution for this problem is proposed in Section 5.5. The
original state is included as an extra point in the grid.

The generation of X = {x1,...,z,} is specified in terms of the Sobol’
draws {si,...,s,} of dimension N, which are elements of the unit cube. It
is not necessary to use Sobol’ points; rather any low discrepancy sequence
in the N-dimensional unit cube is sufficient.

13



5.2 Grid generation

First we consider the case where the grid density is chosen to be uniform on
the region [a,b] C RY where

a = x4+ [7’]1 —0— %diag(i]) —a(og--- an)'] (T —1t) (26)

b = z;+ [7’]1 —d— %diag(i]) +a(op--- an)'] (T —1) (27)

and o; = /0y, T is the risk-free rate, 0 is the vector of continuous dividend
rates and 1 is the N-vector of ones. A sufficiently large value for « in
this case would be 3. Note that in a high dimension the grid does not
represent the process (23) well in that it is very unlikely for the paths to
enter the corners of the grid, and thus the convergence rate is expected to
be slow. This can be likened to numerical integration using a badly-adapted
importance sampling function.
The ith grid point is set to be

ri=a+ s Q(b—a) (28)

where s; is the 4th Sobol’ point and ® denotes componentwise multiplication.
One of the disadvantages of using a uniform grid is that the support of the
transition density is not contained in the support of the grid density; thus
asymptotics also require @ — 00.

Second we consider the case where the grid density is normal with re-
spective mean and covariance

g = xp+ |rl—0— %diag(E) (T —1t) (29)

S, = aX(T-t) (30)

The parameter o should be at least 1 in this case for the grid to be well-
adapted. In any dimension this grid specification is well-adapted to the
risk-neutral process (23) so long as « is not too large and the process is not
convection-dominated. The latter case is addressed in Section 5.5.

The ith grid point is set to be

Ti = g + R; (‘1/71(82'71) e ‘1/71(82'7]\7)) (31)

where U~ is the standard normal inverse function, R’gRg is the Cholesky
decomposition of 3, and s; ; is the jth component of s;.

Examples of the uniform and normal grids in two dimensions are shown
in Figure 2. It should be noted that the advantage of using an irregular grid
is realised in dimensions of at least three.

!/
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Figure 2: Examples of QMC uniform and normal grids respectively in two

dimensions with 500 points

5.3 European option pricing

When pricing American options it also helps to price the European couter-
part. This forms a crude lower bound for the price of an American option,
and also provides a control variate for variance reduction.

For the latter purpose we compute the European value using the same
grid as for the American case. This gives us access to an approximation
to the early exercise premium which can be added to the European value
computed using a much larger grid to obtain a variance reduced American

price.

The European price can be calculated on very large grids since it requires
only numerical integration. The European price is calculated through

U(Z‘Ct?t)

1

() fap 0 —o(x) de (32)
RN

LS wx) (33)
=1

where the X; are QMC points distributed according to the density fg, 7.

5.4 Randomised QMC

The QMC grids we use are deterministic; however perturbing the Sobol’
points randomly in parallel allows us to observe the behaviour of solutions
for a number of different QMC grids. Thus approximate error estimates can
be obtained by treating the QMC solution as a random variable. The use
of such methods is surveyed in Owen [16] for integration problems.

15



In our setting we generate both uniform and normally distributed grids.

In order to randomise the Sobol’ points in (28) and (31) we add the same ran-

dom term to all points in the Sobol’ sequence, modulo 1. Suppose S = (s;)

is our sequence of Sobol’ points, then the jth randomised Sobol’ sequence
is given by

S;j={s;+U; mod 1} (34)

where U; are independent uniform random vectors on [0,1]" and z mod 1
denotes the fractional part of x.

The randomised QMC grids can then be generated using the framework
of Section 5.2 with different randomised Sobol’ sequences.

5.5 Reuse of P(T1

The most computationally intensive task in the irregular grid method is the
matrix root operation. In order to improve efficiency we propose a method
where the matrix root can be reused for a number of trials. The method
can be seen as a variance reduction technique.

First note that we can reformulate the problem so that the process has
zero drift, but the drift is incorporated in the payoff function. That is, the
price in the stopping time formulation is given by

v(z,t) = supE2 (e (71 T rl — 6 — idia
(1) = supf, (709 (X(1) + (11 = 6~ Jding(2)))  (35)

where the expectation is taken under the risk neutral measure without the
drift term. That is, EJ, X (s) = z for all s € [, T).

Now given a grid X = {z1,...,zx} we note that all rotations of X about
x = x¢ and reflections in hyperplanes through zg will leave it invariant with
respect to the driftless measure. The solutions from the different grids can
be combined to provide a variance-reduced estimate at little extra cost.

Care must be taken that the payoff function is not invariant under the
grid transformations. The idea of applying transformations is that solutions
obtained using transformed grids represent new, although not independent,
approximations to the price.

5.6 Exercise rule

A natural approximation to the optimal exercise rule using the pricing re-
sults of one grid is to take the implied rule of the nearest time and nearest
neighbour in the grid.
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Specifically we define the exercise rule for grid points to be

0 otherwise

e (k)
Tmmwé{l o = v (36)
and for general points z € RV

ﬂ%mé{limwzw (37)

0 otherwise

where ¢ = argmin (||z — z;|| : z; € X).

This rule is easily implemented and can also be adapted to the case where
we have several different grids. In this case one could base the exercise rule
on a vote between grids.

One can also extend the rule to time points between grid timesteps by
taking the grid at the nearest time step or by taking a weighted average of
the rules implied by the two neighbouring grids.

5.7 Hedging

Whereas applying an exercise rule to out-of-sample paths gives a low-biased
estimate of the option value, applying a hedging rule gives a high-biased
estimate. In order to hedge in a complete market setting we must be able
to estimate partial derivatives of the value function.

In the literature there is little said about the practicalities of hedging
in a high dimensional setting. The problem with using an approach such
as LSM is that the method does not naturally form approximations to the
value function from which derivatives can be estimated. One can form an
online hedging strategy by evaluating prices at states perturbed in each
underlying; however simulations using such a method are expensive com-
putationally because a large number of option values must be computed
during the simulation. Furthermore one must be very careful with partial
derivative estimates obtained from differencing stochastic point estimates;
in particular the point estimates must be sufficiently accurate and the per-
turbations must be well-chosen with respect to the (unknown) curvature of
the value function.

A solution provided by the irregular grid method involves estimates of
the price not only at the current state, but at all states in the grid. This al-
lows one to extract derivative estimates using value information from nearby
points in the grid; for example using partial derivatives implied by a local
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affine approximation. The extra work involved in computing values at per-
turbed points is thus avoided; indeed the irregular grid method provides
derivative information as a by-product.

To make this more formal, we define the multi-index-valued function

m(z, X, k) = {i1,..., 0%} (38)

where 4; is the jth nearest neighbour of z with respect to a Euclidean norm.

Now the partial derivative approximations are estimated by projecting
the grid values at points z,, v ) onto the space of affine functions and
using the partial derivatives implied by the projection.

6 Experimental Results

6.1 Benchmarks

There are few benchmark results for high-dimensional American options.
Broadie and Glasserman [6] provide 90% confidence intervals for American
call options on the maximum of five assets with nine exercise opportunities
and the geometric average of five and seven assets with ten exercise opportu-
nities using their stochastic mesh method. Longstaff and Schwartz [14] price
the Broadie and Glasserman maximum options using the LSM method.

Stentoft [18] uses the binomial method of Boyle et al. [3] and the LSM
method to price put options on the arithmetic average, geometric average,
maximum and minimum of three and five assets.

Broadie and Glasserman [5] and Fu et al. [9] provide benchmark results
for options over five assets with three exercise opportunities.

Finally, Rogers [17] and Haugh and Kogan [11] use the dual formulation
to price a number of different American options.

A useful result involving options on the geometric average of several
assets is that this problem can be easily reduced to an option pricing problem
in one dimension. Suppose that the risk-neutral dynamics in the log domain

+
are given by (23), and the payoff function ¢ (s) = (K —(]1 si)l/N> where
K is the strike price and N is the number of assets. Then using [t0’s lemma

one finds that the price is the same as that of a vanilla put on the asset with
log price Y where Y (t) = + Zl]\il Xi(t) and

1 N

dy(s) = ﬁZdXi(s) (39)
=1

= f[ds+ adW(s) (40)
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The parameters of the diffusion are given by

1 N
fo= T_WZU? (41)
i=1
2

1 N N
o = | LB (42)
i=1 \j=1

Using this we find that an accurate price for the geometric average Amer-
ican option in the Stentoft setting is 1.355, and for the Bermudan version
with ten exercise opportunities it is 1.343; this represents an increase of
about 6% in the early exercise premium.

6.2 Experiments

Our experiments are conducted in a MATLAB environment and are based
on the five-dimensional examples of Stentoft [18]. Specifically we consider
stock processes driven by correlated Brownian motions for put options with
four different payoff functions. The setting we use for valuation is identical
to that presented in Section 4.

Our programs are mostly script-based but some computationally inten-
sive routines, for example the PSOR code, have been written in C as mex
functions.

We are given initial stock prices S;(0) = 40 for each 4, the correlations
between log stock prices are p;; = 0.25, 7 # j, and volatilities? are o; = 0.2
for all 4, the risk-free interest rate is fixed at r = 0.06, the expiry is T = 1.
and we use K = 10 time-steps.

We generate uniform and normal grids in a randomised QMC framework
as detailed in Section 4 using the parameter values @« = 3 and o = 1,1.5,2
respectively; these were found to give good rates of convergence. The vector
of initial stock prices zy was always included as the first grid point.

The payoff functions considered correspond to put options on the arith-
metic mean, geometric mean, maximum and minimum respectively,

(5~ @s0")"
(K — min(s;)) "

di(s) = (K-13s)" (s
pa(s) = (K —max(s;)"  gu(s)

where + denotes the positive part of z.

(43)

2In Stentoft’s paper the volatilities are misprinted as o7 = 0.2.
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Option Exact Binomial LSM LSM Normal  Normal

type (0S) grid  grid (OS)
Arith. - 1.235 1.241 1.231 1.246 1.238
Average (0.0006)  (0.0006) (0.004)  (0.005)
Geom. 1.343 1.340 1.348 1.335 1.350 1.345
Average (0.0006)  (0.0007)  (0.004)  (0.005)
Maximum - 0.230 0.275 0.268 0.276 0.233

(0.0004) (0.0004) (0.008)  (0.002)

Minimum - 5.841 5815  5.816  5.847 5.821
(0.0012) (0.0014) (0.009)  (0.013)

Table 1: Comparison of Bermudan price estimates with ten exercise oppor-
tunities. The grid estimates are an average of 50 grids with size 1000; the
normal grids had @ = 1.5. The binomial method of Boyle et al. [3] was used
with Richardson extrapolation. The OS (out of sample) columns give the
result of 100,000 trials using the exercise strategy implied by the method.
The binomial and LSM prices are given by Stentoft [18] and the OS values
for LSM are computed using 20 trials. The exact price given is the numeri-
cal solution to the equivalent one-dimensional problem. Standard errors are
shown in brackets.

Tables 1 and 2 show results and comparisons for Bermudan and Ameri-
can option prices respectively using the irregular grid method with a normal
grid and o = 1.5.

We remark that the values obtained from the irregular grid method are
higher than those produced by the LSM algorithm. This is particularly
interesting in the out-of-sample results since this is the average value of the
exercise strategy implied by the pricing algorithm.

6.3 Uniform grid

In the uniform grid case, only a single QMC grid was generated for each
payoff function. Figure 3 shows the resulting convergence behaviour.

It was found that taking averages over several grids did not affect the
convergence pattern greatly, and severe downward bias for small samples for
both European and American prices was always observed, this bias seem-
ingly caused by the poorly adapted grid. It can be seen however that the
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Option Exact Normal grid ~ Normal grid Hedged

type American  American  American (OS) American (OS)
Arith. - 1.257 1.243 1.363
Average (0.004) (0.004) (0.004)
Geom. 1.355 1.360 1.348 1.462
Average (0.004) (0.005) (0.004)
Maximum - 0.295 0.267 0.504
(0.009) (0.002) (0.006)
Minimum - 5.862 5.789 6.355
(0.009) (0.012) (0.010)

Table 2: Comparison of American price estimates. The grid estimates in
the third and fourth columns are an average of 50 grids with size 1000;
the normal grids had @ = 1.5 and used ten time steps. The OS (out of
sample) column gives the result of 100,000 trials using the exercise strategy
implied by the 50 grid solutions, and is computed using 50 time steps. The
hedged column gives the average cost of the hedging strategy obtained as
a by-product of a single price computation; it is implemented at 50 times
steps and uses the grid solution at the nearest grid time to compute the
hedge. The exact price given is the numerical solution to the equivalent
one-dimensional problem. Standard errors are shown in brackets.
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Figure 3: QMC grid valuation on a uniform grid with a = 3 of European
(solid lines) and American (dotted lines) put options on the arithmetic aver-
age, geometric average, maximum and minimum respectively over five assets.
Grids use the same Sobol’ sequence. Stentoft’s LSM solutions are drawn as
horizontal lines.

uniform grid solution is converging, albeit at a very slow rate.

We also see that the convergence patterns in the American and European
cases are very similar, and the convergence of prices for arithmetic and
geometric average payoffs are similar. The former is not surprising if we
consider the similarities between the American and European problems, and
the latter can be explained by the similarities in shapes of the arithmetic
and geometric payoff functions.

6.4 Normal grid

In the normal grid case 50 randomised QMC grids were used for each payoff
function, although such a high number should not be needed in practise.

22



145 R
N
. 14 B .‘~‘ -@
> B e --8 - g _ 1
Py B .g = EEF = b SLE A
FREPEE TSR S e e s $--1
©
>
c 13p
o
3
O a5t
Rl
L
g 12F
=
w & 4 &
115 B WS TS =R & L s ]
=
0 S S S S [P et S
) 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Grid points (n) Grid points (n)

028 8- - @

e N
—~ . >

© 0.26 4 -0
= ® [ R =
P e [
S oz - >
© w [
2 ozf , c
§ .l o 2
B 02 ¢ B
° 2
© 0.18F
] 2
‘(-U' 0.16 g
E £
= ]
o L
4 o w
0121 o &. &- & & & ™ &
k—ﬂ“‘r w hd - - - B -
o1 100 200 300 400 500 600 700 800 900 1000
Grid points (n) Grid points (n)

Figure 4: Average QMC grid valuation over 50 normal grids with o = 1.0
(circles), a = 1.5 (squares), a = 2.0 (diamonds) of European (solid lines)
and American (dotted lines) put options on the arithmetric average, geo-
metric average, maximum and minimum respectively over five assets using
0 = 0.5. Stentoft’s Bermudan LSM solutions are drawn as horizontal lines.
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Figure 5: Average QMC grid valuation over 50 normal grids with o = 1.0
(circles), a = 1.5 (squares), a = 2.0 (diamonds) of European (solid lines)
and American (dotted lines) put options on the arithmetic average, geometric
average, maximum and minimum respectively over five assets using § = 0.
Stentoft’s LSM solutions are drawn as horizontal lines.

Figure 4 shows the convergence behaviour of the irregular grid method for
QMC uniform and normal grids respectively where the implicitness param-
eter is 0 = % The convergence of the normal grid solution is much faster
than for the uniform grid, as expected.

We see that convergence is very quick for the arithmetic and geometric
average options. It seems that the convergence is always to a value slightly
higher than Stentoft’s Bermudan prices, the increase in early exercise pre-
mium of about 5% representing the extra value of a true American contract.

Figure 5 shows the convergence behaviour for a normal grid where the
explicit method (6 = 0) is used. This can be directly compared to the results

of Stentoft since the explicit method solves the Bermudan pricing problem.
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For the more problematic cases of the maximum and minimum options,
the convergence is much slower. In the case of the maximum it is not clear
even with 1000 grid points what an appropriate estimate should be. It is
also not clear whether the convergence in our case for the explicit method
agrees with the value obtained by Stentoft. This is a case where the grid
could be adapted to the payoff function as well as to the process itself; such
extensions are reserved for future investigation.

In Table 1 it is encouraging to see that the irregular grid prediction for
the geometric average option is very accurate as compared to the exact price
obtained by solving an equivalent one-dimensional problem. The exercise
strategy performs well in the average rate options, but not for the more
problematic maximum and minimum payoffs.

6.5 Hedging

We have proposed an algorithm for pricing American options which, as
detailed in Section 5.7 yields a hedging strategy as a by-product; thus sim-
ulation of a hedging strategy can be done quickly and efficiently.

Using the implied hedging strategy of a single grid, and taking 20 nearest
neighbours for the delta estimation, we obtain the results of Table 2. It is
clear that the hedge errors are much larger than the exercise errors.

The strategy used is naive however in that the results of only a single grid
solution are used. If could be improved by using information from different
solutions or by recomputing the hedging strategy at each timestep.

6.6 Timings

The most time-consuming operation in the irregular grid method is the
computation of the matrix root. Some timings for computing matrix roots
in MATLAB 6.1 on a PIII 866MHz machine are presented in Table 3. It
should be noted that the time does not depend strongly on the order of the
root, so that square root and tenth root operations take about the same
amount of time for example.

Although the matrix root operation is time-consuming for large values
of n, it should be noted that once a root has been computed for a single
normally distributed grid, it can subsequently be used for valuing options
on diffusions with arbitrary payoff functions and parameters without the
need for recomputation. For options with different payoffs the matrix can
be reused in the obvious way. When different parameters are considered,
grid transformations and time changes can be used to adjust the implied
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Size Mem. Mem. Time Time-

P full sparse Pro(g) ' for p1/10 stepping

(n)  (IE6b)  (1B6Db) 7 (sec) (sec)

500 2.0 06 0.190 23 05
1000 8.0 18 0.147 200 1.3
150  16.0 33 0.123 750 2.0
2000 32.0 5.1 0.106 2000 2.9
2500 50.0 7.1 0.094 4000 3.8
3000 72.0 9.1 0.084 7200 4.9

Table 3: Timings and storage requirements for the irregular grid method
using MATLAB 6.1 with a PIII 866MHz processor, matrix entries stored in
double precision (8 bytes per entry). The sparse matrices are formed by elim-
inating all entries smaller than 5 x 10~* and renormalising. Timestepping
is total over 10 timesteps, using the sparse matrix and the explicit method.
Note that sparse matrices were not used for any experiments in this paper,
the information provided rather serves to illustrate the complexity of the
method as n increases.

covariance of the transition probabilities, and the payoff functions can be
manipulated in order to account for a different risk-neutral drift.

7 Conclusions

We have proposed a new method for finding the value of American options in
a high-dimensional setting. Central to this method is the use of an irregular
grid over the state space and an approximation of the partial differential
operator (PDO) on this grid.

In our analysis we allow any grid which is generated using MC or QMC
trials with respect to a known density function. Once the Markov chain
approximation has been obtained, we use the transition probability matrix
to form a semidiscrete approximation to the PDO corresponding to this
Markov chain. This is done through taking a logarithm of the transition
probability matrix, although in practise one must only compute a root of
the matrix.

Most importantly we remove the requirement to specify basis functions to
be used in approximations of the value function or exercise strategy. Indeed
the only specification needed is a grid density, although asymptotically even
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this choice is not critical. This sets our method aside from methods such
as LSM where the specification of basis functions plays a critical role in the
success of the method.

The irregular grid solution gives price estimates at all points in the grid.
This is useful if one requires partial derivative information, for example
when hedging. Partial derivatives can easily be estimated from the solution
by projecting values from nearby points onto the space of affine functions.

Our experiments suggest that the irregular grid method has very good
convergence properties, especially when the grid density is related to the
density of the process itself. In particular, the grid density should have a
larger variance than the process; for a geometric Brownian motion process
in five dimensions it was found that a ratio of 1.5 gave a good rate of
convergence, although (slower) convergence was also observed for ratios of
1.0 and 2.0. Convergence of the maximum option was not clear with a grid
of 1000 points.

In the uniform grid case, although the convergence rate was not as fast, it
could be seen that the convergence patterns of the European and American
estimates were very similar. Given that the European estimate amounts to
the tractable method of Monte Carlo integration with importance sampling,
this similarity is encouraging.

The numerical results obtained largely agree with those of Stentoft [18].
We find that the early exercise premium is increased by about 5% for the
examples he considers when allowing a continuum of exercise opportunities
rather than only ten. We also find that the exercise strategies implied by
the LSM method give significantly lower values (statistically) than the LSM
price implies, except in the case of the minimum option; this is an indication
that out-of-sample paths should be used in simulation methods - in this
way the price obtained corresponds directly to the average value of the
implied exercise strategy. This suggests that one should be careful in higher
dimensions when applying the recommendation of Longstaff and Schwartz
[14] to save time by only using in-sample paths.

This emphasises the need to specify an exercise (or hedging) strategy
when pricing American options; without such an accompanying strategy
the price is not meaningful to the buyer (or seller).

In terms of future research possibilities there are a number of areas which
can be explored, in terms of both the numerical and theoretical properties
of the algorithm.

The irregular grid method extends naturally to the valuation of other
derivatives including those related to the term structure, and determination
of the corresponding exercise and hedging strategies. This is of considerable
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practical interest given the amount of money involved in such markets and
the need for reliable algorithms.

A further variance reduction technique would be to adjust the transition
probabilities according to the empirical density of points; this should result
in even better convergence properties. Adjustment may be done after con-
structing the transition matrix for example using quadratic programming to
improve local consistency in the sense of Kushner and Dupuis [13], but may
also take inspiration from the literature on nonparametric analysis. These
and other possible refinements are reserved for future investigation.

Further work is also needed to obtain theoretical justification of the
proposed method. Such a justification may follow the analysis of Glowinski
et al. [10] and Jaillet et al. [12] or the stochastic control methods of Kushner
and Dupuis [13].
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