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2 Credit Risk Modelling

WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Mathematics and Information Science

Credit Risk Modelling: Lecture 1

1 Hazard Function of a Random Time

Let τ : Ω → R+ be a non-negative random variable, henceforth referred to as the random time,
which is defined on a probability space (Ω,G,P). For convenience, we assume that P{τ = 0} = 0 and
P{τ > t} > 0 for any t ∈ R+. The last condition means that τ is assumed to be unbounded; more
precisely, it is not dominated with probability 1 by a constant. A bounded random time can also be
studied using techniques presented in what follows, though. Let F stand for the (right-continuous)
cumulative distribution function of τ, i.e., F (t) = P{τ ≤ t} for every t ∈ R+. The survival function
G of τ is defined by the formula: G(t) := 1− F (t) = P{τ > t} for every t ∈ R+.

Example 1.1 If τ is exponentially distributed under P with parameter λ, then F (t) = 1− e−λt and
thus the survival function equals G(t) = e−λt.

We define the jump process H associated with the random time τ by setting Ht = 11{τ≤t} for
t ∈ R+. It is obvious that the process H has right-continuous sample paths, specifically, each sample
paths is equal to 0 before random time τ, and it equals 1 for t ≥ τ.

1.1 Conditional Expectations

Let H = (Ht)t≥0 stand for the filtration generated by H, specifically, for any t ∈ R+ we set Ht =
σ(Hu : u ≤ t). The filtration H is assumed to be (P,G)-completed. Finally, we set H∞ = σ(Hu :
u ∈ R+). The σ-field Ht represents the information generated by the observations of the occurrence
of the random time τ up to time t – that is, on the time interval [0, t].

We use the commonly standard notation σ(η) for the σ-field generated by a random variable η.
We also assume that Y is an integrable random variable on the probability space (Ω,G,P) – that is,
EP|Y | < ∞.

Let us first enumerate a few basic properties of the filtration H:
(H.1) Ht = σ({τ ≤ u} : u ≤ t),
(H.2) Ht = σ(σ(τ) ∩ {τ ≤ t}),
(H.3) Ht = σ(τ ∧ t) ∨ ({τ > t}),
(H.4) Ht = Ht+,
(H.5) H∞ = σ(τ),
(H.6) for any A ∈ H∞ we have: A ∩ {τ ≤ t} ∈ Ht.

All properties above are easy to check; let us only mention that in order to establish (H.6), it is
enough to consider an arbitrary event A of the following form: A = {τ ≤ s} for some s ∈ R+.

Lemma 1.1 Let Y be a G-measurable random variable. Then

11{τ≤t}EP(Y |Ht) = EP(11{τ≤t}Y |H∞) = 11{τ≤t}EP(Y | τ) (1.1)

and

11{τ>t}EP(Y |Ht) = 11{τ>t}
EP(11{τ>t}Y )
P{τ > t} .
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Proof. We shall first check that

EP(11{τ≤t}Y |H∞) = EP(11{τ≤t}Y |Ht).

In view of (H.6), we have A ∩ {τ ≤ t} ∈ Ht for any A ∈ H∞. Consequently,
∫

A

EP(11{τ≤t}Y |H∞) dP =
∫

A

11{τ≤t}Y dP =
∫

A∩{τ≤t}
Y dP

=
∫

A∩{τ≤t}
EP(Y |Ht) dP =

∫

A

11{τ≤t}EP(Y |Ht) dP

=
∫

A

EP(11{τ≤t}Y |Ht) dP

since the event {τ ≤ t} belongs to Ht. To establish the second formula, we need to show that

EP(11{τ>t}Y |Ht) = c11{τ>t}, where c =
EP(11{τ>t}Y )
P{τ > t} .

Equivalently, we need to check that for any A ∈ Ht

∫

A

EP(11{τ>t}Y |Ht) dP =
∫

A

c11{τ>t} dP.

In this case, it is enough to consider events of the form: A = {τ ≤ s} for s ≤ t, as well as the event
A = {τ > t}. In the former case, both sides of the last equality are equal to 0. Furthermore, since
A = {τ > t} ∈ Ht we obtain

∫

A

EP(11AY |Ht) dP =
∫

A

11AY dP =
∫

Ω

11AY dP = cP{A} =
∫

A

c11A dP.

This completes the proof of the lemma. 2

Corollary 1.1 For any G-measurable random variable Y we have

EP(Y |Ht) = 11{τ≤t}EP(Y | τ) + 11{τ>t}
EP(11{τ>t}Y )
P{τ > t} . (1.2)

For any Ht-measurable random variable Y we have

Y = 11{τ≤t}EP(Y | τ) + 11{τ>t}
EP(11{τ>t}Y )
P{τ > t} , (1.3)

that is, Y = h(τ) for a Borel measurable h : R→ R, which is constant on the open interval ] t,∞[.

The basic formula (1.2), though simple, appears to be quite useful. Let us state some special
cases of this result. For any t < s we have

P{τ ≥ s |Ht} = 11{τ>t}P{τ ≥ s | τ > t}
and

P{τ > s |Ht} = 11{τ>t}P{τ > s | τ > t}. (1.4)

The following result is a straightforward consequence of (1.4).
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Corollary 1.2 The process M given by the formula

Mt =
1−Ht

1− F (t)
, ∀ t ∈ R+, (1.5)

follows an H-martingale. Equivalently, for every 0 ≤ t ≤ s,

EP(Hs −Ht |Ht) = 11{τ>t}
F (s)− F (t)

1− F (t)
. (1.6)

Proof. Equality (1.4) can be rewritten as follows:

EP(1−Hs |Ht) = (1−Ht)
1− F (s)
1− F (t)

.

This immediately yields the martingale property of M. The second formula is also clear. 2

Definition 1.1 An increasing function Γ : R+ → R+ given by the formula

Γ(t) := − ln G(t) = − ln (1− F (t)), ∀ t ∈ R+,

is called the hazard function of τ. If the cumulative distribution function F is absolutely continuous
with respect to the Lebesgue measure – that is, when F (t) =

∫ t

0
f(u) du, for a Lebesgue integrable

function f : R+ → R+, then we have

F (t) = 1− e−Γ(t) = 1− e
−

∫ t

0
γ(u) du

,

where γ(t) = f(t)(1 − F (t))−1. The function γ is called the intensity function (or the hazard rate)
of the random time τ.

Notice that Γ(t) is well defined for any t ∈ R+, since by assumption F (t) < 1 for every t ∈ R+.
Furthermore, we have

Γ(∞) := lim
t→∞

Γ(t) = ∞,

since clearly limt→∞(1 − F (t)) = 0. It is also obvious that the intensity function γ : R+ → R (if it
exists) is a non-negative function. Finally, γ is Lebesgue integrable on any bounded interval [0, t]
and

∫∞
0

γ(u) du = ∞.

Example 1.2 If τ is exponentially distributed with parameter λ under P the hazard rate of τ is
constant: γ(t) = λ for every t ∈ R+.

Using the hazard function Γ, we may rewrite (1.2) as follows:

EP(Y |Ht) = 11{τ≤t}EP(Y | τ) + 11{τ>t} eΓ(t) EP(11{τ>t}Y ). (1.7)

In particular, for any t ≤ s equality (1.4) takes the following form:

P{τ > s |Ht} = 11{τ>t} eΓ(t)−Γ(s) = 11{τ>t} e
−

∫ s

t
γ(u) du

,

where the second equality holds, provided that τ admits the hazard rate γ.



Credit Risk Modelling 5

Corollary 1.3 Let Y be H∞-measurable so that Y = h(τ) for some Borel measurable function
h : R+ → R. Then the following statements are true.
(i) If the hazard function Γ of τ is continuous, then we have

EP(Y |Ht) = 11{τ≤t}h(τ) + 11{τ>t}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u). (1.8)

(ii) If τ admits the intensity function γ, then we have

EP(Y |Ht) = 11{τ≤t}h(τ) + 11{τ>t}

∫ ∞

t

h(u)γ(u)e−
∫ u

t
γ(v) dv

du.

In particular, for any t ≤ s,

P{τ > s |Ht} = 11{τ>t}e
−

∫ s

t
γ(v) dv

and
P{t < τ < s |Ht} = 11{τ>t}

(
1− e

−
∫ s

t
γ(v) dv

)
.

Lemma 1.2 The process L, given by the formula

Lt := 11{τ>t}eΓ(t) = (1−Ht)eΓ(t), ∀ t ∈ R+, (1.9)

follows an H-martingale.

Proof. It suffices to observe that the process L coincides with the process M introduced in Corollary
1.2. 2

1.2 Martingales Associated with a Continuous Hazard Function

We already know that the H-adapted process of finite variation L given by formula (1.9) is an H-
martingale (no matter whether Γ is a continuous or a discontinuous function). In this section, we will
examine further important examples of martingales associated with the hazard function. We make
throughout an additional assumption that the hazard function Γ of a random time τ is continuous.

We shall first assume that the cumulative distribution function F is an absolutely continuous
function, so that the random time τ admits the intensity function γ. Our goal is to establish a
martingale characterization of γ. More specifically, we shall check directly that the process M̂,
defined as:

M̂t := Ht −
∫ t

0

γ(u)11{u≤τ} du = Ht −
∫ t∧τ

0

γ(u) du = Ht − Γ(t ∧ τ),

follows an H-martingale. To this end, recall that by virtue of (1.6) we have

EP(Hs −Ht |Ht) = 11{τ>t}
F (s)− F (t)

1− F (t)
.

On the other hand, if we denote

Y =
∫ s

t

γ(u)11{u≤τ} du =
∫ s∧τ

t∧τ

f(u)
1− F (u)

du = ln
1− F (t ∧ τ)
1− F (s ∧ τ)

,
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then obviously Y = 11{τ>t}Y. Let us set A = {τ > t}. Using first (1.2) and then Fubini’s theorem,
we obtain

EP(Y |Ht) = EP(11AY |Ht) = 11A
EP(Y )
P{A} = 11A

EP
( ∫ s

t
γ(u)11{u≤τ} du

)

1− F (t)

= 11A

∫ s

t
γ(u)(1− F (u)) du

1− F (t)
= 11A

F (s)− F (t)
1− F (t)

= EP(Hs −Ht |Ht).

This shows that the process M̂ follows an H-martingale. We have thus established the following
simple, but remarkable, result.

Lemma 1.3 Assume that
F (t) = 1− e

−
∫ t

0
γ(u) du

, ∀ t ∈ R+,

where γ : R+ → R+ is the hazard rate of τ. Then the process M̂

M̂t = Ht −
∫ t∧τ

0

γ(u) du, ∀ t ∈ R+, (1.10)

follows an H-martingale.

It appears that a counterpart of Lemma 1.3 can be established when F is merely continuous.
Before examining this extension, we recall an auxiliary result. For the proof of Lemma 1.4, the
interested reader is referred, for instance, to Brémaud (1981) or Revuz and Yor (1999).

Lemma 1.4 Let g and h be two right-continuous functions with left-hand limits. If g and h are of
finite variation on [0, t] then we have

g(t)h(t) = g(0)h(0) +
∫

]0,t]

g(u−) dh(u) +
∫

]0,t]

h(u) dg(u)

= g(0)h(0) +
∫

]0,t]

g(u) dh(u) +
∫

]0,t]

h(u−) dg(u)

= g(0)h(0) +
∫

]0,t]

g(u−) dh(u) +
∫

]0,t]

h(u−) dg(u)

+
∑

u≤t

∆g(u)∆h(u),

where ∆g(u) = g(u)− g(u−) and ∆h(u) = h(u)− h(u−).

Any of the equalities of Lemma 1.4 will be referred to as the integration by parts formula (or the
product rule) for functions of finite variation. We shall frequently apply this formula to stochastic
processes of finite variation. In such a case, the integrals should be understood as the path-wise
integrals, defined with probability 1.

Proposition 1.1 Assume that the hazard function Γ is continuous. Then the process of finite
variation M̂t = Ht − Γ(t ∧ τ) follows an H-martingale. Furthermore, for every t ∈ R+ we have

Lt = 1−
∫

]0,t]

Lu− dM̂u. (1.11)
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Proof. For the sake of brevity, we shall make use of Lemma 1.2 (the direct calculations also give, of
course, the required result). It is clear that M̂ follows an H-adapted integrable process. Using the
integration by parts formula for functions of finite variation, we obtain

Lt = (1−Ht)eΓ(t) = 1 +
∫

]0,t]

eΓ(u)
(
(1−Hu) dΓ(u)− dHu

)
(1.12)

since Γ is a continuous increasing function. This in turn yields

M̂t = Ht − Γ(t ∧ τ) =
∫

]0,t]

(
dHu − (1−Hu) dΓ(u)

)
= −

∫

]0,t]

e−Γ(u) dLu,

so that M̂ is manifestly an H-martingale. Since (1.12) may be rewritten as follows:

Lt = 1 +
∫

]0,t]

eΓ(u)(1−Hu−)(dΓ(u ∧ τ)− dHu) = 1−
∫

]0,t]

Lu− dM̂u,

it is clear that (1.11) is valid. 2

Proposition 1.2 Assume that the hazard function Γ of τ is continuous. Then for any Borel mea-
surable function h : R+ → R such that the random variable h(τ) is integrable, the process Mh, given
by the formula

M̂h
t = 11{τ≤t}h(τ)−

∫ t∧τ

0

h(u) dΓ(u), ∀ t ∈ R+,

is an H-martingale.

Proof. We shall directly verify the martingale property of M̂h. Therefore, the demonstration given
below provides also an alternative proof of Proposition 1.1. On one hand, formula (1.8) in Corollary
1.3 yields

I := EP
(
h(τ)11{t<τ≤s} |Ht

)
= 11{τ>t}eΓ(t)

∫ s

t

h(u)e−Γ(u) dΓ(u).

On the other hand, it is clear that

J := EP
( ∫ s∧τ

t∧τ

h(u) dΓ(u)
∣∣∣Ht

)
= EP

(
h̃(τ)11{t<τ≤s} + h̃(s)11{τ>s} |Ht

)
,

where we set h̃(s) =
∫ s

t
h(u) dΓ(u). Consequently, using again formula (1.8), we get

J = 11{τ>t}eΓ(t)
( ∫ s

t

h̃(u)e−Γ(u) dΓ(u) + e−Γ(s)h̃(s)
)
.

To conclude the proof, it is enough to observe that Fubini’s theorem yields
∫ s

t

e−Γ(u)

∫ u

t

h(v) dΓ(v) dΓ(u) + e−Γ(s)h̃(s)

=
∫ s

t

h(u)
∫ s

u

e−Γ(v) dΓ(v) dΓ(u) + e−Γ(s)

∫ s

t

h(u) dΓ(u)

=
∫ s

t

h(u)e−Γ(u) dΓ(u),

as expected. 2
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Remarks. It is apparent that M̂h admits the following integral representation

M̂h
t =

∫

]0,t]

h(u) dM̂u.

This equality shows that the martingale property of M̂h is also a straightforward consequence of
Proposition 1.1.

Corollary 1.4 Assume that the hazard function Γ of τ is continuous. Let h : R+ → R be a Borel
measurable function such that the random variable Y = eh(τ) is integrable. Then the process

M̃h
t = exp

(
11{τ≤t}h(τ)

)−
∫ t∧τ

0

(eh(u) − 1) dΓ(u)

is an H-martingale.

Proof. Notice that

exp
(
11{τ≤t}h(τ)

)− 1 = 11{τ≤t}eh(τ) + 11{τ>t} − 1 = 11{τ≤t}eh(τ) −Ht,

so that

M̃h
t = 11{τ≤t}eh(τ) −

∫ t∧τ

0

eh(u) dΓ(u)− M̂t.

To complete the proof of the corollary, it is thus enough to make use of Proposition 1.2. 2

The next result offers a still another example of an H-martingale associated with a random time
τ.

Corollary 1.5 Assume that the hazard function Γ of τ is continuous. Let h : R+ → R be a Borel
measurable function such that the random variable h(τ) is integrable. Then the process

M̄h
t = (1 + 11{τ≤t}h(τ)) exp

(
−

∫ t∧τ

0

h(u) dΓ(u)
)

is an H-martingale.

Proof. Let us denote by U the following decreasing continuous process:

Ut = exp
(
−

∫ t∧τ

0

h(u) dΓ(u)
)
.

Notice that
1 + 11{τ≤t}h(τ) = 1 +

∫

]0,t]

h(u) dHu =: Hh
t .

An application of the product rule yields

dM̄h
t = d(Hh

t Ut) = Uth(t) dHt − (1 + 11{τ≤t}h(τ))Uth(t) dΓ(t ∧ τ).

Consequently, we have

dM̄h
t = Uth(t) d(Ht − Γ(t ∧ τ)) = Uth(t) dM̂t.

The last equality makes it clear that the process M̄h indeed follows an H-martingale. 2
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1.3 Martingale Representation Theorem

The following elementary version of the martingale representation theorem is commonly known (see,
for instance, Brémaud (1981)).

Proposition 1.3 Assume that F is an absolutely continuous function. Let Mh
t := EP(h(τ) |Ht)

for some Borel measurable function h : R+ → R such that the random variable h(τ) is integrable.
Then

Mh
t = Mh

0 +
∫

]0,t]

ĥ(u) dM̂u, (1.13)

where M̂t = Ht −
∫ t∧τ

0
γu du and the function ĥ : R+ → R is given by the formula

ĥ(t) = h(t)− eΓ(t) EP
(
11{τ>t}h(τ)

)
. (1.14)

Proof. Observe first that Mh
0 = EP(h(τ)). Recall also that the random variable Mh

t admits the
following representation (cf. (1.8))

Mh
t = EP(h(τ) |Ht) = 11{τ≤t}h(τ) + 11{τ>t}g(t), (1.15)

where the function g : R→ R equals

g(t) := eΓ(t)EP
(
11{τ>t}h(τ)

)
= eΓ(t)

∫ ∞

t

h(u)f(u) du. (1.16)

If representation (1.13) is valid for some function ĥ, then we have, on the set {τ > t},

Mh
t = EP(h(τ))−

∫ t

0

ĥ(s)γ(s) ds = EP(h(τ))−
∫ t

0

ĥ(s)eΓ(s)f(s) ds.

On the other hand, by virtue of (1.15), equality Mh
t = g(t) holds on this set. Differentiating both

sides with respect to t, and taking into account the equality γ(t) = eΓ(t)f(t), we obtain

−eΓ(t)f(t)ĥ(t) = g′(t) = eΓ(t)f(t)(g(t)− h(t)).

The equality ĥ(t) = h(t)− g(t) is thus straightforward on the set {t < τ}. Since the process Mh is
manifestly continuous on this set, we also have

ĥ(t) = h(t)−Mh
t = h(t)−Mh

t−

on the set {t < τ}. In view of the last equality, it is clear that, on the event {τ ≤ t}, the right-hand
side of (1.13) gives h(τ), as expected. 2

Proposition 1.3 remains valid when the hazard function Γ is merely continuous, as the next result
shows.

Proposition 1.4 Assume that F is a continuous function. Let Mh
t := EP(h(τ) |Ht) for some Borel

measurable function h : R+ → R such that the random variable h(τ) is integrable. Then

Mh
t = Mh

0 +
∫

]0,t]

ĥ(u) dM̂u, (1.17)

where M̂t = Ht − Γ(t ∧ τ) and ĥ satisfies (1.14), i.e., ĥ = h− g, where g is given by (1.16).
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Proof. By virtue of (1.8), the left-hand side of formula (1.17) equals (see also (1.15))

I = EP(h(τ) |Ht) = Hth(τ) + (1−Ht)g(t).

On the other hand, the right-hand side of (1.17) can be rewritten as follows:

J = g(0) +
∫

]0,t]

ĥ(u) dM̂u

= g(0) +
∫

]0,t]

(h(u)− g(u)) d(Hu − Γ(u ∧ τ))

= g(0) + Ht(h(τ)− g(τ)) +
∫ t∧τ

0

(g(u)− h(u)) dΓ(u)

= g(0) + Hth(τ) + (1−Ht)g(t)− g(t ∧ τ) +
∫ t∧τ

0

(g(u)− h(u)) dΓ(u).

To check that I = J, it suffices to show that

g(t ∧ τ) = g(0) +
∫ t∧τ

0

(g(u)− h(u)) dΓ(u)

or, equivalently, that for any t ∈ R+ we have

g(t) = g(0) +
∫ t

0

(g(u)− h(u)) dΓ(u).

Put another way, we need to verify that the following equality holds:

eΓ(t)

∫ ∞

t

h(u) dF (u) =
∫ ∞

0

h(u) dF (u) +
∫ t

0

eΓ(u)(g(u)− h(u)) dF (u).

By applying Fubini’s theorem, we get (recall that eΓ(u)dF (u) = dΓ(u))
∫ t

0

eΓ(u)g(u) dF (u) =
∫ t

0

e2Γ(u)

∫ ∞

u

h(v) dF (v) dF (u)

=
∫ t

0

h(v)
∫ v

0

eΓ(u) dΓ(u) dF (v) +
∫ ∞

t

h(v)
∫ t

0

eΓ(u) dΓ(u) dF (v)

=
∫ t

0

h(u)
(
eΓ(u) − 1) dF (u) +

(
eΓ(t) − 1

) ∫ ∞

t

h(u) dF (u).

This completes the proof. 2

Notice that representation (1.17) can also be rewritten as follows:

Mh
t = Mh

0 +
∫

]0,t]

(h(u)−Mh
u−) dM̂u. (1.18)

Remarks. Since an arbitrary H∞-measurable random variable X has the form X = h(τ), we may
also deduce from Proposition 1.4 that any H-martingale admits the representation (1.17). Hence,
any H-martingale is a purely discontinuous martingale, as it follows a process of finite variation. Put
another way, any continuous H-martingale necessarily follows a constant process.
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1.4 Change of a Probability Measure

Let P∗ be an arbitrary probability measure on (Ω,H∞). Assume that P∗ is absolutely continuous
with respect to P, i.e., P∗{A} = 0 for any event A ∈ H∞ such that P{A} = 0. Then there exists a
Borel measurable function h : R+ → R+, which satisfies

EP(h(τ)) =
∫

]0,∞[

h(u) dF (u) = 1,

and such that the Radon-Nikodým density of P∗ with respect to P equals

η :=
dP∗

dP
= h(τ) ≥ 0, P-a.s., (1.19)

We shall henceforth write EP (EP∗ , resp.) to denote the expected value with respect to the proba-
bility measure P (P∗, resp.) Probability measure P∗ is equivalent to P if and only if the inequality
in (1.19) is strict, P-a.s.

Furthermore, we shall assume that P∗{τ = 0} = 0 and P∗{τ > t} > 0 for every t ∈ R+. The
first condition is in fact satisfied for an arbitrary probability measure P∗ absolutely continuous with
respect to P. For the second condition to hold, it is sufficient and necessary to postulate that for
every t ∈ R+

P∗{τ > t} = 1− F ∗(t) =
∫

]t,∞[

h(u) dF (u) > 0, (1.20)

where F ∗ is the cumulative distribution function of τ under P∗, specifically,

F ∗(t) := P∗{τ ≤ t} =
∫

]0,t]

h(u) dF (u).

Condition (1.20) is equivalent to the following one (cf. (1.16))

g(t) = eΓ(t)EP
(
11{τ>t}h(τ)

)
= eΓ(t)

∫

]t,∞[

h(u) dF (u) = eΓ(t) P∗{τ > t} > 0.

From now on, we assume that this is indeed the case, so that the hazard function Γ∗ of τ with
respect to P∗ is well defined.

Is not difficult to establish the relationship between the hazard functions Γ∗ and Γ. Indeed, we
have

Γ∗(t)
Γ(t)

=
ln

( ∫
]t,∞[

h(u) dF (u)
)

ln(1− F (t))
=: g∗(t),

since, by the definition of the hazard function, Γ∗(t) = − ln(1 − F ∗(t)). Let us now analyze some
special cases of the last relationship.

In the first step, we will assume that F is an absolutely continuous function, so that the intensity
function γ of τ under P is well defined. Recall that γ is given by the following formula:

γ(t) = f(t)(1− F (t))−1, ∀ t ∈ R+.

Under the present assumptions, the c.d.f. F ∗ of τ under P∗ equals

F ∗(t) := P∗{τ ≤ t} = EP(11{τ≤t}h(τ)) =
∫ t

0

h(u)f(u) du =
∫ t

0

f∗(u) du,
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where f∗(u) = h(u)f(u), and thus F ∗ is an absolutely continuous function. Thus, the intensity
function γ∗ of the random time τ under P∗ exists, and is given by the formula

γ∗(t) =
f∗(t)

1− F ∗(t)
=

h(t)f(t)

1− ∫ t

0
h(u)f(u) du

.

To derive a more explicit relationship between the intensities γ and γ∗, we define an auxiliary
function h∗ : R+ → R by setting h∗(t) = h(t)g−1(t). Notice that

γ∗(t) =
h(t)f(t)

1− ∫ t

0
h(u)f(u) du

=
h(t)f(t)∫∞

t
h(u)f(u) du

=
h(t)f(t)

e−Γ(t)g(t)
=

h∗(t)f(t)
1− F (t)

= h∗(t)γ(t).

This also means that dΓ∗(t) = h∗(t) dΓ(t). It appears that the last equality holds true if F is merely
a continuous function. Indeed, if F (and thus F ∗) is continuous, we get

dΓ∗(t) =
dF ∗(t)

1− F ∗(t)
=

d(1− e−Γ(t)g(t))
e−Γ(t)g(t)

=
g(t)dΓ(t)− dg(t)

g(t)
= h∗(t) dΓ(t).

We have thus established the following partial result in which, for the sake of convenience, we denote
κ(t) = h∗(t)− 1 = h(t)g−1(t)− 1.

Proposition 1.5 Let the two probability measures P∗ and P be related to each other by means of
(1.19). If the hazard function Γ of τ under P is continuous, then the hazard function Γ∗ of τ under
P∗ is also continuous and dΓ∗(t) = (1 + κ(t)) dΓ(t), where κ(t) = h(t)g−1(t) − 1 and the functions
h and g are given by formulae (1.19) and (1.16), respectively.

Let us now take a closer look at the auxiliary function κ. To this end, we introduce the following
non-negative P-martingale η:

ηt :=
dP∗

dP

∣∣∣
Ht

= EP(η |Ht) = EP(h(τ) |Ht). (1.21)

It is clear that ηt = Mh
t . We shall refer to the process η as the Radon-Nikodým density process of P∗

with respect to P. In view of (1.7), we have

ηt = 11{τ≤t}h(τ) + 11{τ>t} eΓ(t)

∫

]t,∞[

h(u) dF (u) = 11{τ≤t}h(τ) + 11{τ>t}g(t).

If, in addition, F is a continuous function then (cf. (1.8))

ηt = 11{τ≤t}h(τ) + 11{τ>t}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u).

On the other hand, using (1.17) and (1.18), we obtain

Mh
t = Mh

0 +
∫

]0,t]

Mh
u−(h∗(u)− 1) dM̂u = Mh

0 +
∫

]0,t]

Mh
u−κ(u) dM̂u,

which shows that η solves the following SDE:

ηt = 1 +
∫

]0,t]

ηu−κ(u) dM̂u. (1.22)
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It is not difficult to find an explicit solution to this equation, namely,

ηt =
(
1 + 11{τ≤t}κ(τ)) exp

(
−

∫ t∧τ

0

κ(u) dΓ(u)
)
. (1.23)

In view of the last formula, the martingale property of the process η – that is apparent from (1.21)
– is thus also a simple consequence of Corollary 1.5. The proof of the following classic result is left
to the reader.

Lemma 1.5 Let Y follow a process of finite variation. Consider the following linear stochastic
differential equation

Zt = 1 +
∫

]0,t]

Zu− dYu. (1.24)

The unique solution Zt = Et(Y ) to (1.24), referred to as the Doléans exponential of Y, equals

Et(Y ) = eYt

∏

0<u≤t

(1 + ∆Yu)e−∆Yu = eY c
t

∏

0<u≤t

(1 + ∆Yu), (1.25)

where Y c is the continuous part of Y, i.e., Y c
t = Yt −

∑
0<u≤t ∆Yu.

Since the process η satisfies (1.22), it is clear that it can be represented as follows:

ηt = Et

(∫

]0, · ]
κ(u) dM̂u

)
.

Expression (1.23) for the random variable ηt can thus also be obtained from (1.25), upon setting
dYu = κ(u) dM̂u. Let us stress that (1.25) is merely a special case of the well known general formula
for the Doléans exponential (see, e.g., Elliott (1982), Protter (1990), or Revuz and Yor (1999)). We
are in a position to formulate the following result (all statements in Proposition 1.6 were already
established above).

Proposition 1.6 Assume that F is a continuous function. Let P∗ be any probability measure on
(Ω,H∞) absolutely continuous with respect to P, so that (1.19) holds for some function h. Assume
that P∗{τ > t} > 0 for t ∈ R+. Then the Radon-Nikodým density process η of P∗ with respect to P
satisfies

ηt :=
dP∗

dP

∣∣∣
Ht

= Et

( ∫

]0, · ]
κ(u) dM̂u

)
,

where κ(t) = h(t)g−1(t)− 1 and

g(t) = eΓ(t)

∫ ∞

t

h(u) dF (u).

Moreover, the hazard function of τ under P∗ equals Γ∗(t) = g∗(t)Γ(t) with

g∗(t) =
ln

( ∫
]t,∞[

h(u) dF (u)
)

ln(1− F (t))
.
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1.5 Martingale Characterization of the Hazard Function

Proposition 1.1 raises the natural question whether the martingale property of the process Ht−Γ(t∧
τ) with respect to the filtration H uniquely characterizes the hazard function of a random time τ?
Our goal is to show that the answer to this question is positive, provided that the hazard function Γ
is continuous. Notice that for a discontinuous hazard function Γ, equality (1.12) takes the following
form:

Lt = L0 +
∫

]0,t]

(1−Hu) deΓ(u) −
∫

]0,t]

eΓ(u−) dHu

or, equivalently,

Lt = 1 +
∫

]0,t]

eΓ(u−)
(
(1−Hu) dΓ(u)− dHu

)
+

∑

s≤t, s<τ

(
∆eΓ(s) − eΓ(s−) ∆Γ(s)

)
,

where
∆eΓ(s) = eΓ(s) − eΓ(s−), ∆Γ(s) = Γ(s)− Γ(s−).

The last formula makes in clear that in the case of a discontinuous hazard function Γ, the process
Ht − Γ(t ∧ τ) is not an H-martingale.

Let us recall that Ht = Ht∧τ ; that is, the process H is stopped at time τ. We find it convenient
to introduce the notion of a martingale hazard function of a random time.

Definition 1.2 A function Λ : R+ → R is called a martingale hazard function of a random time τ
with respect to its natural filtration H if and only if the process Ht−Λ(t∧τ) follows an H-martingale.

The function Λ may also be seen as an F0-adapted right-continuous stochastic process, where F0

is the trivial filtration, i.e., F0
t = F0

0 = {∅,Ω} for every t ∈ R+. We shall sometimes find it useful
to refer to the martingale hazard function as the (F0,H)-martingale hazard process of τ.

Proposition 1.7 (i) The unique martingale hazard function of τ with respect to H is the right-
continuous increasing function Λ given by the formula

Λ(t) =
∫

]0,t ]

dF (u)
1− F (u−)

=
∫

]0,t ]

dP{τ ≤ u}
1− P{τ < u} , ∀ t ∈ R+. (1.26)

(ii) The martingale hazard function Λ coincides with the hazard function Γ if and only if F is a
continuous function. In general, for every t ∈ R+ we have

e−Γ(t) = e−Λc(t)
∏

0<u≤t

(1−∆Λ(u)), (1.27)

where Λc(t) = Λ(t)− ∑
0≤u≤t ∆Λ(u) and ∆Λ(u) = Λ(u)− Λ(u−).

(iii) The martingale hazard function Λ is continuous if and only if the cumulative distribution func-
tion F of τ is continuous. In this case, Λ satisfies Λ(t) = − ln (1− F (t)) = Γ(t) for every t ∈ R+.

Proof. Let us first examine the uniqueness. The definition of Λ implies that EP(Ht) = EP(Λ(t∧ τ)).
Put more explicitly (recall that F (0) = 0),

F (t) =
∫

]0,t ]

Λ(u) dF (u) + Λ(t)(1− F (t)), (1.28)
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so that Λ is necessarily a right-continuous function. Furthermore, if Λ1 and Λ2 are the two right-
continuous functions, which satisfy (1.28), then for every t ∈ R+ we have

∫

]0,t ]

(Λ1(u)− Λ2(u)) dF (u) + (Λ1(t)− Λ2(t))(1− F (t)) = 0.

Using the last equality, one can show – by making use of rather standard contraction arguments –
that the martingale hazard function Λ is unique.

To complete the proof of part (i), we need to establish the martingale property of the process
Ht − Λ(t ∧ τ). It is enough to check that for any t ≤ s we have

EP(Hs −Ht |Ht) = 11{τ>t}
F (s)− F (t)

1− F (t)
= EP(Y |Ht),

where the first equality is a consequence of (1.6), and where we have set

Y := Λ(s ∧ τ)− Λ(t ∧ τ) =
∫

]t∧τ,s∧τ ]

dF (u)
1− F (u−)

.

Since Y = 11{τ>t} Y, using (1.2), we obtain

EP(Y |Ht) = EP(11{τ>t} Y |Ht) = 11{τ>t}
EP(Y )

1− F (t)
.

Furthermore, we have

EP(Y ) = P{τ > s}
∫

]t,s]

dF (u)
1− F (u−)

+
∫

]t,s]

∫

]t,u]

dF (v)
1− F (v−)

dF (u).

Consequently,

EP(Y ) = (Λ(s)− Λ(t))(1− F (s)) +
∫

]t,s]

(Λ(u)− Λ(t)) dF (u)

= (Λ(s)− Λ(t))(1− F (s))− Λ(t)(F (s)− F (t)) +
∫

]t,s]

Λ(u) dF (u).

The product rule yields
∫

]t,s]

Λ(u) dF (u) = Λ(s)F (s)− Λ(t)F (t)−
∫

]t,s]

F (u−) dΛ(u). (1.29)

Finally, it is clear from (1.26) that
∫

]t,s]

F (u−) dΛ(u) = Λ(s)− Λ(t)− F (s) + F (t).

Combining the above equalities, we find that EP(Y ) = F (s)−F (t) for every t ≤ s. This completes
the proof of (i). To establish (ii), notice that by virtue of (1.26), the survival function G(t) = 1−F (t)
satisfies

G(t) = −
∫

]0,t ]

G(u−) dΛ(u).
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Therefore (cf. (1.24)–(1.25)),

e−Γ(t) = G(t) = e−Λc(t)
∏

0<u≤t

(1−∆Λ(u)).

This completes the proof of (1.27). In particular, the martingale hazard function Λ and the hazard
function Γ are not equal to each other, when the function F is discontinuous. All statements of part
(iii) are immediate consequences of part (ii). 2

Remarks. Assume that the cumulative distribution function F is absolutely continuous, with the
probability density function f. Then necessarily

Λ(t) = Γ(t) =
∫ t

0

f(u)(1− F (u))−1 du

and thus the martingale hazard function Λ is absolutely continuous as well. Specifically, Λ(t) =∫ t

0
λ(u) du, where λ(u) = γ(u) = f(u)(1− F (u))−1 for every u ∈ R+.

1.6 Compensator of a Random Time

By virtue of the properties of the martingale hazard function, the process Ct := Λ(t∧τ) satisfies: (i) C
is an increasing, right-continuous, H-adapted process, and (ii) the compensated process H−C follows
an H-martingale. This shows that the notion of the martingale hazard function is closely related to
the concept of the H-compensator of τ or, more precisely, to the concept of the H-compensator of
the associated jump process H.

We adopt here the standard convention, which stipulates that B is an increasing process if B is
an adapted process with non-decreasing, right-continuous sample paths. The process H is, of course,
a bounded increasing process, and so also a bounded H-submartingale.

Let us first recall the definition of the compensator of an increasing process (the compensator of
an increasing process is also known as its dual predictable projection; see, e.g., Dellacherie (1972) or
Jacod (1979)). When specified to our situation, it can be stated as follows.

Definition 1.3 A process A is called the H-compensator of the process H if and only if the fol-
lowing conditions are satisfied: (i) A is an H-predictable increasing process, with A0 = 0, (ii) the
compensated process H −A follows an H-martingale.

Existence and uniqueness of the Doob-Meyer decomposition for a bounded submartingale1 imply
that the process H admits a unique H-compensator. We are in a position to prove the following
result.

Lemma 1.6 Assume that the cumulative distribution function F of τ is continuous. Then the
unique H-compensator A of τ equals, for every t ∈ R+,

At = Λ(t ∧ τ) = Γ(t ∧ τ) = − ln (1− F (t ∧ τ)).

Proof. In view of the definition of the martingale hazard function, part (ii) in Proposition 1.7, and
Lemma 1.6, it is enough to check that the process At = Λ(t ∧ τ), t ∈ R+, is H-predictable. But
this is clear, since the mapping t → t ∧ τ defines a continuous, H-adapted process, so that it is
an H-predictable process. In view of the continuity of Λ, we conclude that A is an H-predictable
process. 2

1See Theorem 4.10 in Sect. 1.4 of Karatzas and Shreve (1991).
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WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Mathematics and Information Science

Credit Risk Modelling: Lecture 2

2 Hazard Process of a Random Time

The concepts introduced in the previous lecture will now be extended to a more general set-up, when
allowance for a larger flow of information – formally represented by some reference filtration F – is
made.

We denote by τ a non-negative random variable on a probability space (Ω,G,P), satisfying:
P{τ = 0} = 0 and P{τ > t} > 0 for any t ∈ R+. We introduce a right-continuous process H
by setting Ht = 11{τ≤t} and we denote by H the associated filtration: Ht = σ(Hu : u ≤ t). Let
G = (Gt)t≥0 be an arbitrary filtration on (Ω,G,P). All filtrations are assumed to satisfy the ‘usual
conditions’ of right-continuity and completeness. For each t ∈ R+, the information available at time
t is captured by the σ-field Gt. We shall focus on the case described in the following assumption.

Condition (G.1) We assume that we are given an auxiliary filtration F such that G = H ∨ F; i.e.,
Gt = Ht ∨ Ft for any t ∈ R+.

For the sake of simplicity, we assume that the σ-field F0 is trivial (so that G0 is a trivial σ-field as
well). For given filtrations H ⊆ G, the equality Gt = Ht ∨ Ft does not specify uniquely an auxiliary
filtration F. For instance, when Gt = Ht, we may take F = F0, but also F = H (or indeed any other
sub-filtration of H). In most applications, F will appear in a natural way as the filtration generated
by a certain stochastic process.

Condition (G.1a) For every t ∈ R+, the event {τ ≤ t} belongs to the σ-field Ft (and thus τ is an
F-stopping time).

Under (G.1a), we have G = F, and thus τ also is a G-stopping time. In some models, only a
partial observation of the random time τ is postulated. Such a case corresponds to the following
condition.

Condition (G.1b) For some dates t ∈ R+, the event {τ ≤ t} does not belong to the σ-field Gt.

Let Ĥ ⊂ H stand for the filtration associated with the partial observations of τ. Then the enlarged
filtration G equals G = Ĥ ∨ F.

Under (G.1), the process H is obviously G-adapted, but it is not necessarily F-adapted. In other
words, the random time τ is a G-stopping time, but it may fail to be an F-stopping time. Under
(G.1b), the process H is not G-adapted, i.e., τ is not a G-stopping time. However, in both cases the
following condition is satisfied.

Condition (G.2) For every t ∈ R+ we have Ft ⊆ Gt ⊆ Ht ∨ Ft.

Lemma 2.1 Assume that the filtration G satisfies G ⊆ H∨F, that is, Gt ⊆ Ht∨Ft for every t ∈ R+.
Then G ⊆ G∗, where G∗ = (G∗t ) t≥0 with

G∗t :=
{
A ∈ G : ∃B ∈ Ft, A ∩ {τ > t} = B ∩ {τ > t}}.

Proof. It is rather clear that the class G∗t is a sub-σ-field of G. Therefore, it is enough to check that
Ht ⊆ G∗t and Ft ⊆ G∗t for every t ∈ R+. Put another way, we need to verify that if either A = {τ ≤ u}
for some u ≤ t or A ∈ Ft, then there exists an event B ∈ Ft such that A ∩ {τ > t} = B ∩ {τ > t}.
In the former case we may take B = ∅, and in the latter B = A. 2
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Remarks. By a suitable modification of arguments used in the proof of Lemma 2.1, one can show
that under (G.2) for any Gt-measurable random variable Y there exists an Ft-measurable random
variable Ỹ such that Y = Ỹ on the set {τ > t}. Under (G.1), this remarkable property is also a
straightforward consequence of part (ii) in Lemma 2.2.

For any t ∈ R+, we write Ft = P{τ ≤ t | Ft}, and we denote by G the F-survival process of τ
with respect to the filtration F, given as:

Gt := 1− Ft = P{τ > t | Ft}, ∀ t ∈ R+.

Notice that for any 0 ≤ t ≤ s we have {τ ≤ t} ⊆ {τ ≤ s}, and so

EP(Fs | Ft) = EP(P{τ ≤ s | Fs} | Ft) = P{τ ≤ s | Ft} ≥ P{τ ≤ t | Ft} = Ft.

This shows that the process F (G, resp.) follows a bounded, non-negative F-submartingale (F-
supermartingale, resp.) under P. We may thus deal with the right-continuous modification of F (of
G) with finite left-hand limits. The next definition is a straightforward generalization of Definition
1.1.

Definition 2.1 Assume that Ft < 1 for t ∈ R+. The F-hazard process of τ under P, denoted by Γ,
is defined through the formula 1 − Ft = e−Γt . Equivalently, Γt = − ln Gt = − ln (1 − Ft) for every
t ∈ R+.

Since G0 = 1, it is clear that Γ0 = 0. For the sake of conciseness, we shall refer briefly to Γ as the
F-hazard process, rather than the F-hazard process under P, unless there is a danger of confusion.

In this chapter, we assume that the inequality Ft < 1 holds for every t ∈ R+, so that the F-hazard
process Γ is well defined. It should be stressed that the case when τ is an F-stopping time (i.e., the
case when F = G) is not dealt with here.

2.1 Conditional Expectations

We shall first focus on the conditional expectation EP(11{τ>t}Y | Gt), where Y is a P-integrable
random variable. We start by the following result, which is a direct counterpart of Lemma 1.1.
Unless explicitly stated otherwise, we assume that Condition (G.2) is valid, and thus the filtration
G is the sub-filtration of G∗.

Lemma 2.2 (i) Assume that (G.2) holds. Then for any G-measurable random variable Y and any
t ∈ R+ we have

EP(11{τ>t}Y | Gt) = P{τ > t | Gt}
EP(11{τ>t}Y | Ft)
P{τ > t | Ft} . (2.1)

(ii) If, in addition, Ht ⊆ Gt (so that (G.1) holds) then

EP(11{τ>t}Y | Gt) = 11{τ>t}EP(Y | Gt) = 11{τ>t}
EP(11{τ>t}Y | Ft)
P{τ > t | Ft} . (2.2)

In particular, for any t ≤ s

P{t < τ ≤ s | Gt} = 11{τ>t}
P{t < τ ≤ s | Ft}
P{τ > t | Ft} . (2.3)
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Proof. Since (ii) is a straightforward consequence of (i), it is enough to establish the first statement.
Let us denote C = {τ > t}. To prove (i), we need to verify that (recall that Ft ⊆ Gt)

EP
(
11CY P(C | Ft)

∣∣Gt

)
= EP

(
11CEP(11CY | Ft)

∣∣Gt

)
.

Put another way, we need to show that for any A ∈ Gt we have
∫

A

11CY P(C | Ft) dP =
∫

A

11CEP(11CY | Ft) dP.

In view of Lemma 2.1, for any A ∈ Gt we have A ∩ C = B ∩ C for some event B ∈ Ft, and so
∫

A

11CY P(C | Ft) dP =
∫

A∩C

Y P(C | Ft) dP =
∫

B∩C

Y P(C | Ft) dP

=
∫

B

11CY P(C | Ft) dP =
∫

B

EP(11CY | Ft)P(C | Ft) dP

=
∫

B

EP(11CEP(11CY | Ft) | Ft) dP =
∫

B∩C

EP(11CY | Ft) dP

=
∫

A∩C

EP(11CY | Ft) dP =
∫

A

11CEP(11CY | Ft) dP.

This ends the proof. 2

Assume that (G.1) holds. By virtue of part (ii) in Lemma 2.2, for any Gt-measurable random
variable Y, there exists an Ft-measurable random variable Ỹ such that 11{τ>t}Y = 11{τ>t}Ỹ . As
already mentioned (see remarks after Lemma 2.1), this property can also be derived by approximation
arguments. If it is taken for granted, the derivation of (10.6) can be substantially simplified. Indeed,
suppose that we know that (the first equality below is obvious)

11{τ>t}EP(Y | Gt) = EP(11{τ>t}Y | Gt) = 11{τ>t}ζ (2.4)

for some integrable Ft-measurable random variable ζ such that ζ = EP(Y | Gt) on {τ > t}. By
taking the conditional expectation with respect to Ft of both terms of the second equality in (2.4),
we obtain

EP
(
EP(11{τ>t}Y | Gt)

∣∣Ft

)
= EP(11{τ>t}Y | Ft) = ζ P{τ > t | Ft},

and this immediately yields (10.6). However, it does not seem to be possible to derive (2.1) using
this argument. Since (recall that P{τ > t | Ft} > 0)

Ỹ =
EP(11{τ>t}Y | Ft)
P{τ > t | Ft} , (2.5)

we have, as expected, Ỹ = Y when Y is an Ft-measurable random variable.
Before we state the next lemma, let us introduce another auxiliary random variable by setting

Ŷ = EP(Y | Fτ−), where Fτ− stands for the σ-field generated by all events that strictly precede the
random time τ (let us stress that τ is not necessarily an F-stopping time). Since F0 is trivial, by
definition we have (see, e.g., Dellacherie [2])

Fτ− = σ
(
B ∩ {τ > t} : B ∈ Ft, t ∈ R+

)
. (2.6)

In particular, the inclusion σ(τ) ⊆ Fτ− is always valid, and σ(τ) = Fτ− when F = F0 is the trivial
filtration. It is also not difficult to check that Gτ− = Fτ−. Consequently, the equality EP(Y | Fτ−) =
EP(Y | Gτ−) is valid for any G-measurable integrable random variable Y.
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Lemma 2.3 Let Y be an integrable G-measurable random variable and let Ŷ = EP(Y | Fτ−). For
any 0 ≤ t ≤ s we have

EP(11{τ>t}Y | Gt) = EP(11{τ>t}Ŷ | Gt), (2.7)

EP(11{t<τ≤s} Y | Gt) = EP(11{t<τ≤s} Ŷ | Gt). (2.8)

Proof. Consider an arbitrary event A ∈ Gt. By virtue of Lemma 2.1, we may, and do, assume that
A ∩ C = B ∩ C, where we write C = {τ > t}. Since B ∩ C is manifestly in Fτ−, we have

∫

A

11CY dP =
∫

A∩C

Y dP =
∫

B∩C

Y dP =
∫

B∩C

EP(Y | Fτ−) dP

=
∫

A∩C

EP(Y | Fτ−) dP =
∫

A

11CEP(Y | Fτ−) dP =
∫

A

11C Ŷ dP.

This gives (2.7). For (2.8), notice that the event {τ > s} is in Fτ−. 2

It is apparent that formulae (2.1)–(2.3) can be rewritten as follows:

EP(11{τ>t}Y | Gt) = P{τ > t | Gt}EP(11{τ>t} eΓtY | Ft),

EP(11{τ>t}Y | Gt) = 11{τ>t} EP(11{τ>t} eΓtY | Ft) (2.9)

and
P{t < τ ≤ s | Gt} = 11{τ>t} EP

(
1− eΓt−Γs | Ft).

The next corollary deals with some simple, but useful, modifications of these expressions.

Corollary 2.1 Let Y be a G-measurable random variable and let t ≤ s. (i) Assume that (G.2) holds.
Then

EP(11{τ>s} Y | Gt) = P{τ > t | Gt}EP(11{τ>s} eΓtY | Ft). (2.10)

(ii) If (G.1) is valid then

EP(11{τ>s} Y | Gt) = 11{τ>t} EP(11{τ>s} eΓtY | Ft) (2.11)

and
EP(11{t<τ≤s} Y | Gt) = 11{τ>t} EP(11{t<τ≤s} eΓtY | Ft). (2.12)

If Y is Fs-measurable, then

EP(11{τ>s} Y | Gt) = 11{τ>t} EP
(
eΓt−ΓsY | Ft

)
(2.13)

and
EP(11{t<τ≤s} Y | Gt) = 11{τ>t} EP

(
(11{τ>t} − e−Γs)eΓtY

∣∣Ft

)
.

Proof. In view of (2.1), to show that (2.10) holds, it is enough to observe that 11{τ>t}11{τ>s} =
11{τ>s}. Equalities (10.7)–(10.8) are immediate consequences of (2.10). For (10.9), notice that, by
virtue of (10.7), we obtain

EP(11{τ>s} Y | Gt) = 11{τ>t} EP
(
11{τ>s} eΓtY

∣∣Ft

)

= 11{τ>t} EP
(
P{t > s | Fs} eΓtY

∣∣Ft

)

= 11{τ>t} EP
(
(1− Fs) eΓtY

∣∣Ft

)

= 11{τ>t} EP
(
eΓt−ΓsY

∣∣Ft

)
.
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To derive the last formula, it suffices to combine (2.9) with (10.9). 2

It is worth noticing that equality (10.9) remains valid when the random variable Y is merely G-
measurable, rather than Fs-measurable, provided that, on the right-hand side of (10.9), we substitute
Y with the Fs-measurable random variable Ỹ for which 11{τ>s}Y = 11{τ>s}Ỹ . More explicitly, we
need to replace Y by Ỹ given by the following expression (cf. (2.5)):

Ỹ =
EP(11{τ>s}Y | Fs)
P{τ > s | Fs} .

The proof of the next auxiliary result is essentially the same as the proof of part (i) in Lemma 2.2.

Lemma 2.4 For any G-measurable random variable Y and any sub-σ-field F of G we have

EP(11{τ>t}Y |Ht ∨ F) = 11{τ>t}
EP(11{τ>t}Y | F)
P{τ > t | F} . (2.14)

For any t ≤ s we have

P{τ > s |Ht ∨ F} = 11{τ>t}
P{τ > s | F}
P{τ > t | F} . (2.15)

Our next goal is to examine the conditional expectation EP(11{τ≤t}Y | Gt). Its evaluation under
(G.2) is rather difficult, and thus we shall introduce an alternative condition.

Condition (G.3) For any t ∈ R+ and arbitrary event A ∈ H∞ ∨ Ft we have A ∩ {τ ≤ t} ∈ Gt.

Under (G.3), for every t ∈ R+ we have Ht ⊆ Gt. It is easy to see that (G.1) is sufficient for (G.3)
to hold; however, (G.2) does not imply (G.3). Finally, conditions (G.2) and (G.3), taken together,
imply (G.1).

Lemma 2.5 Assume that (G.3) holds. For any G-measurable random variable Y we have

EP(11{τ≤t}Y | Gt) = 11{τ≤t}EP(Y | Gt) = 11{τ≤t}EP(Y |H∞ ∨ Ft). (2.16)

Proof. Let us denote D = {τ ≤ t}. For any A ∈ H∞ ∨ Ft we have (notice that D ∈ Gt)
∫

A

EP(11DY |H∞ ∨ Ft) dP =
∫

A

11DY dP =
∫

A∩D

Y dP

=
∫

A∩D

EP(Y | Gt) dP =
∫

A

11DEP(Y | Gt) dP.

The random variable 11DEP(Y | Gt) is manifestly Ht ∨ Gt-measurable, so that it is also H∞ ∨ Ft-
measurable. We conclude that (2.16) holds. 2

Unless explicitly stated otherwise, we assume from now on that Condition (G.1) holds, i.e., we
consider the case when G = H ∨ F. By combining (2.16) with (10.6), we obtain the following well
known result, which is a straightforward generalization of equality (1.2).

Corollary 2.2 For any G-measurable random variable Y we have

EP(Y | Gt) = 11{τ≤t}EP(Y |H∞ ∨ Ft) + 11{τ>t}EP(11{τ>t}eΓtY | Ft).

Any Gt-measurable random variable Y admits the following representation

Y = 11{τ≤t} EP(Y |H∞ ∨ Ft) + 11{τ>t} EP(11{τ>t} eΓtY | Ft).
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Proposition 2.1 (i) Let h : R+ → R be a bounded, continuous function. Then for any t < s ≤ ∞

EP(11{t<τ≤s}h(τ) | Gt) = 11{τ>t}eΓt EP
( ∫

]t,s]

h(u) dFu

∣∣∣Ft

)
. (2.17)

(ii) Let Z be a bounded, F-predictable process. Then for any t < s ≤ ∞

EP(11{t<τ≤s}Zτ | Gt) = 11{τ>t}eΓt EP
( ∫

]t,s]

Zu dFu

∣∣∣Ft

)
. (2.18)

Proof. In view of (10.8), to establish (2.17), it is enough to check that

EP(11{t<τ≤s} h(τ) | Ft) = EP
(∫

]t,s]

h(u) dFu

∣∣∣Ft

)
.

We first consider a piecewise constant function h(u) =
∑n

i=0 hi11{ti<u≤ti+1}, where, without loss of
generality, we take t0 = t < · · · < tn+1 = s. Then

EP(11{t<τ≤s}h(τ) | Ft) =
n∑

i=0

EP
(
EP(hi11]ti,ti+1](τ) | Fti+1)

∣∣Ft

)

= EP
( n∑

i=0

hi(Fti+1 − Fti)
∣∣∣Ft

)

= EP
( n∑

i=0

∫

]ti,ti+1]

h(u) dFu

∣∣∣Ft

)

= EP
( ∫

]t,s]

h(u) dFu

∣∣∣Ft

)
.

To complete the proof of part (i), it suffices to approximate an arbitrary continuous function h by
a suitable sequence of piecewise constant functions.

The proof of (2.18) relies on similar arguments. We begin by assuming that Z is a stepwise F-
predictable process; that is, Zu =

∑n
i=0 Zti11{ti<u≤ti+1} for t < u ≤ s, where t0 = t < · · · < tn+1 = s,

and Zti is Fti-measurable random variable for i = 0, . . . , n. We have

EP
(
11{t<τ≤s} Zτ | Ft

)
= EP

(
11{t<τ≤s}Zτ | Ft

)

= EP
( n∑

i=0

11{ti<τ≤ti+1}Zti

∣∣∣Ft

)

= EP
( n∑

i=0

Zti(Fti+1 − Fti)
∣∣∣Ft

)
.

Consequently, for any stepwise, bounded, F-predictable process Z, we obtain

EP
(
11{t<τ≤s} Zτ | Ft

)
= EP

( ∫

]t,s]

Zu dFu

∣∣∣Ft

)
. (2.19)

In the second step, Z is approximated by a suitable sequence of bounded, stepwise, F-predictable
processes. The sum under the sign of the conditional expectation converges to the Itô integral (or to
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the Lebesque-Stieltjes integral if F is of finite variation). The boundedness of Z and F is a sufficient
condition for the convergence of the sequence of conditional expectations. 2

For the validity of (2.17), it suffices to assume that the function h is piecewise continuous. Also,
the boundedness of the function h (the process Z, resp.) is not a necessary condition for (2.17)
((2.18), resp.) to hold; we have imposed this rather restrictive condition for the sake of convenience.
On the other hand, in general the F-predictability of Z cannot be replaced by the weaker condition
of the G-predictability of Z in Proposition 10.2.

Corollary 2.3 Under the assumptions of Proposition 10.2, if, in addition, the hazard process Γ of
τ is continuous, then

EP(11{t<τ≤s}h(τ) | Gt) = 11{τ>t} EP
( ∫ s

t

h(u)eΓt−Γu dΓu

∣∣∣Ft

)
(2.20)

and
EP(11{t<τ≤s}Zτ | Gt) = 11{τ>t} EP

(∫ s

t

ZueΓt−Γu dΓu

∣∣∣Ft

)
. (2.21)

Proof. Under the present assumptions, dFu = e−Γu dΓu, and thus equality (2.20) ((2.21), resp.) is
an immediate consequence of (2.17) ((2.18), resp.) 2

2.1.1 Case of a G-measurable random variable

Let us return to the general case of a G-measurable (bounded) random variable. The following
natural and practically important question arises: is it possible to derive an expression similar to
(2.21), when Zτ is replaced by a G-measurable random variable. We claim that the answer to this
question is positive. To show this, we proceed as follows. First, we associate with Y the conditional
expectation Ŷ = EP(Y | Fτ−) = EP(Y | Gτ−), where the σ-field Fτ− = Gτ− of all events strictly
preceding τ is formally defined by (2.6). It is known that there exists an F-predictable process Ẑ
such that Ẑτ = Ŷ (see p. 126 in Dellacherie and Meyer (1978a)). The following chain of equalities
is thus valid (cf. (2.8))

EP(11{t<τ≤s} Y | Gt) = EP(11{t<τ≤s} Ŷ | Gt)

= EP(11{t<τ≤s} Ẑτ | Gt) = 11{τ>t}eΓt EP
(∫

]t,s]

Ẑu dFu

∣∣∣Ft

)
(2.22)

= 11{τ>t} EP
( ∫ s

t

ẐueΓt−Γu dΓu

∣∣∣Ft

)
,

where the last equality holds, provided that the hazard process Γ is continuous. It is noteworthy
that the uniqueness of the process Ẑ is neither claimed, nor required here. In the case when several
bounded, F-predictable processes Ẑ satisfying the equality Ẑτ = Ŷ exist, they all yield the same
result for the conditional expectation we are interested in.

The next result appears to be useful for the valuation of a defaultable security that promises to
pay dividends prior to the default time.

Proposition 2.2 Assume that A is a bounded, F-predictable process of finite variation. Then for
every t ≤ s

EP
( ∫

]t,s]

(1−Hu) dAu

∣∣∣Gt

)
= 11{τ>t}eΓtEP

( ∫

]t,s]

(1− Fu) dAu

∣∣∣Ft

)
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or, equivalently,

EP
(∫

]t,s]

(1−Hu) dAu

∣∣∣Gt

)
= 11{τ>t}EP

( ∫

]t,s]

eΓt−Γu dAu

∣∣∣Ft

)
.

Proof. For a fixed, but arbitrary, t ≤ s, we introduce an auxiliary process Ã by setting: Ãu = Au−At

for u ∈ [t, s]. It is clear that Ã is a bounded, F-predictable process of finite variation; the same remark
applies to the process of left-hand limits: Ãt−. Therefore,

Jt := EP
(∫

]t,s]

(1−Hu) dAu

∣∣∣Gt

)

= EP
(∫

]t,s]

11{τ>u} dÃu

∣∣∣Gt

)

= EP
(
Ãτ−11{t<τ≤s} + Ãs11{τ>s}

∣∣∣Gt

)

= 11{τ>t}eΓtEP
( ∫

]t,s]

Ãu− dFu + Ãs(1− Fs)
∣∣∣Ft

)
,

where the last equality follows from formulae (10.9) and (2.18). Using an obvious equality Gt = 1−Ft,
we obtain

EP
( ∫

]t,s]

Ãu− dFu + Ãs(1− Fs)
∣∣∣Ft

)
= EP

(
−

∫

]t,s]

Ãu− dGu + ÃsGs

∣∣∣Ft

)
.

Since Ã follows a process of finite variation (so that its continuous martingale part vanishes), the
following version of Itô’s product rule is in force

ÃsGs = ÃtGt +
∫

]t,s]

Ãu− dGu +
∫

]t,s]

Gu dÃu.

But Ãt = 0, and so

EP
(∫

]t,s]

Ãu− dFu + Ãs(1− Fs)
∣∣∣Ft

)
= EP

( ∫

]t,s]

(1− Fu) dAu

∣∣∣Ft

)
.

This proves the first asserted formula. The second equality is a simple reformulation of the first. 2
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Credit Risk Modelling: Lecture 3

3 Poisson Process and Conditional Poisson Process

In Appendix 1, we have focused our attention on the case of a single random time and the associated
jump process. In some financial applications, we need to model a sequence of successive random
times. Almost invariably, this is done by making use of the so-called F-conditional Poisson process,
also known as the doubly stochastic Poisson process. The general idea is quite similar to the canonical
construction of a single random time, which was examined in Appendix 1. We start by assuming
that we are given a stochastic process Φ, to be interpreted as the hazard process, and we construct
a jump process, with unit jump size, such that the probabilistic features of consecutive jump times
are governed by the hazard process Φ.

3.1 Poisson Process with Constant Intensity

Let us first recall the definition and the basic properties of the (time-homogeneous) Poisson process
N with constant intensity λ > 0.

Definition 3.1 A process N defined on a probability space (Ω,G,P) is called the Poisson process
with intensity λ with respect to G if N0 = 0 and for any 0 ≤ s < t the following two conditions are
satisfied:
(i) the increment Nt −Ns is independent of the σ-field Gs,
(ii) the increment Nt−Ns has the Poisson law with parameter λ(t−s); specifically, for any k = 0, 1, . . .
we have:

P{Nt −Ns = k | Gs} = P{Nt −Ns = k} =
λk(t− s)k

k!
e−λ(t−s).

The Poisson process of Definition 3.1 is termed time-homogeneous, since the probability law of
the increment Nt+h−Ns+h is invariant with respect to the shift h ≥ −s. In particular, for arbitrary
s < t the probability law of the increment Nt − Ns coincides with the law of the random variable
Nt−s. Let us finally observe that, for every 0 ≤ s < t,

EP(Nt −Ns | Gs) = EP(Nt −Ns) = λ(t− s). (3.1)

We take a version of the Poisson process whose sample paths are, with probability 1, right-continuous
stepwise functions with all jumps of size 1. Let us set τ0 = 0, and let us denote by τ1, τ2, . . . the
G-stopping times given as the random moments of the successive jumps of N. For any k = 0, 1, . . .

τk+1 = inf {t > τk : Nt 6= Nτk
} = inf {t > τk : Nt −Nτk

= 1}.
One shows without difficulties that P{ limk→∞ τk = ∞} = 1. It is convenient to introduce the
sequence ξk, k ∈ N of non-negative random variables, where ξk = τk − τk−1 for every k ∈ N. Let us
quote the following well known result.

Proposition 3.1 The random variables ξk, k ∈ N are mutually independent and identically dis-
tributed, with the exponential law with parameter λ, that is, for every k ∈ N we have

P{ξk ≤ t} = P{τk − τk ≤ t} = 1− e−λt, ∀ t ∈ R+.
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Proposition 3.1 suggests a simple construction of a process N, which follows a time-homogeneous
Poisson process with respect to its natural filtration FN . Suppose that the probability space (Ω,G,P)
is large enough to support a family of mutually independent random variables ξk, k ∈ N with the
common exponential law with parameter λ > 0. We define the process N on (Ω,G,P) by setting:
Nt = 0 if {t < ξ1} and, for any natural k,

Nt = k if and only if
k∑

i=1

ξi ≤ t <

k+1∑

i=1

ξi.

It can checked that the process N defined in this way is indeed a Poisson process with parameter
λ, with respect to its natural filtration FN . The jump times of N are, of course, the random times
τk =

∑k
i=1 ξi, k ∈ N.

Let us recall some useful equalities that are not hard to establish through elementary calculations
involving the Poisson law. For any a ∈ R and 0 ≤ s < t we have

EP
(
eia(Nt−Ns)

∣∣Gs

)
= EP

(
eia(Nt−Ns)

)
= eλ(t−s)(eia−1),

and
EP

(
ea(Nt−Ns)

∣∣Gs

)
= EP

(
ea(Nt−Ns)

)
= eλ(t−s)(ea−1).

The next result is an easy consequence of (3.1) and the above formulae. The proof of the proposition
is thus left to the reader.

Proposition 3.2 The following stochastic processes follow G-martingales. (i) The compensated
Poisson process N̂ defined as

N̂t := Nt − λt.

(ii) For any k ∈ N, the compensated Poisson process stopped at τk

M̂k
t := Nt∧τk

− λ(t ∧ τk).

(iii) For any a ∈ R, the exponential martingale Ma given by the formula

Ma
t := eaNt−λt(ea−1) = eaN̂t−λt(ea−a−1).

(iv) For any fixed a ∈ R, the exponential martingale Ka given by the formula

Ka
t := eiaNt−λt(eia−1) = eiaN̂t−λt(eia−ia−1).

Remarks. (i) For any G-martingale M, defined on some filtered probability space (Ω,G,P), and an
arbitrary G-stopping time τ, the stopped process Mτ

t = Mt∧τ necessarily follows a G-martingale.
Thus, the second statement of the proposition is an immediate consequence of the first, combined
with the simple observation that each jump time τk is a G-stopping time.
(ii) Consider the random time τ = τ1, where τ1 is the time of the first jump of the Poisson process
N. Then Nt∧τ = Nt∧τ1 = Ht, so that the process M̂1 introduced in part (ii) of the proposition
coincides with the martingale M̂ associated with τ.
(iii) The property described in part (iii) of Proposition 3.2 characterizes the Poisson process in the
following sense: if N0 = 0 and for every a ∈ R the process Ma is a G-martingale, then N follows
the Poisson process with parameter λ. Indeed, the martingale property of Ma yields

EP
(
ea(Nt−Ns)

∣∣Gs

)
= eλ(t−s)(ea−1), ∀ 0 ≤ s < t.
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By standard arguments, this implies that the random variable Nt−Ns is independent of the σ-field
Gs, and has the Poisson law with parameter λ(t − s). A similar remark applies to property (iv) in
Proposition 3.2.

Let us consider the case of a Brownian motion W and a Poisson process N that are defined
on a common filtered probability space (Ω,G,P). In particular, for every 0 ≤ s < t, the increment
Wt −Ws is independent of the σ-field Gs, and has the Gaussian law N(0, t− s). It might be useful
to recall that for any real number b the following processes follow martingales with respect to G:

Ŵt = Wt − t, mb
t = ebWt− 1

2 b2t, kb
t = eibWt+

1
2 b2t.

The next result shows that a Brownian motion W and a Poisson process N, with respect to a
common filtration G, are necessarily mutually independent.

Proposition 3.3 Let a Brownian motion W and a Poisson process N be defined on a common
filtered probability space (Ω,G,P). Then the two processes W and N are mutually independent.

Proof. Let us sketch the proof. For a fixed a ∈ R and any t > 0, we have

eiaNt = 1 +
∑

0<u≤t

(eiaNt − eiaNt−) = 1 +
∫

]0,t]

(eia − 1)eiaNu− dNu,

= 1 +
∫

]0,t]

(eia − 1)eiaNu− dN̂u + λ

∫ t

0

(eia − 1)eiaNu− du.

On the other hand, for any b ∈ R, the Itô formula yields

eibWt = 1 + ib

∫ t

0

eibWu dWu − 1
2
b2

∫ t

0

eibWu du.

The continuous martingale part of the compensated Poisson process N̂ is identically equal to 0 (since
N̂ is a process of finite variation), and obviously the processes N̂ and W have no common jumps.
Thus, using the Itô product rule for semimartingales, we obtain

ei(aNt+bWt) = 1 + ib

∫ t

0

ei(aNu+bWu) dWu − 1
2
b2

∫ t

0

ei(aNu+bWu) du

+
∫

]0,t]

(eia − 1)ei(aNu−+bWu) dN̂u + λ

∫ t

0

(eia − 1)ei(aNu+bWu) du.

Let us denote fa,b(t) = EP(ei(aNt+bWt)). By taking the expectations of both sides of the last equality,
we get

fa,b(t) = 1 + λ

∫ t

0

(eia − 1)fa,b(u) du− 1
2
b2

∫ t

0

fa,b(u) du.

By solving the last equation, we obtain, for arbitrary a, b ∈ R,

EP
(
ei(aNt+bWt)

)
= fa,b(t) = eλt(eia−1)e−

1
2 b2t = EP

(
eiaNt

)
EP

(
eibWt

)
.

Thus, for any t ∈ R+ the random variables Wt and Nt are mutually independent under P.
In the second step, we fix 0 < t < s, and we consider the following expectation, for arbitrary real

numbers a1, a2, b1 and b2,

f(t, s) := EP
(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)
.
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Let us denote ã1 = a1 + a2 and b̃1 = b1 + b2. Then

f(t, s) = EP
(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)

= EP
(
EP

(
ei(ã1Nt+a2(Ns−Nt)+b̃1Wt+b2(Ws−Wt))

∣∣Gt

))

= EP
(
ei(ã1Nt+b̃1Wt)EP

(
ei(a2(Ns−Nt)+b2(Ws−Wt))

∣∣Gt

))

= EP
(
ei(ã1Nt+b̃1Wt)EP

(
ei(a2Nt−s+b2Wt−s)

))

= fa1,b1(t− s)EP
(
ei(ã1Nt+b̃1Wt)

)

= fa1,b1(t− s)fã1,b̃1
(t),

where we have used, in particular, the independence of the increment Nt−Ns (and Wt−Ws) of the
σ-field Gt, and the time-homogeneity of N and W. By setting b1 = b2 = 0 in the last formula, we
obtain

EP
(
ei(a1Nt+a2Ns)

)
= fa1,0(t− s)fã1,0(t),

while the choice of a1 = a2 = 0 yields

EP
(
ei(b1Wt+b2Ws)

)
= f0,b1(t− s)f0,b̃1

(t).

It is not difficult to check that

fa1,b1(t− s)fã1,b̃1
(t) = fa1,0(t− s)fã1,0(t)f0,b1(t− s)f0,b̃1

(t).

We conclude that for any 0 ≤ t < s and arbitrary a1, a2, b1, b2 ∈ R:

EP
(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)
= EP

(
ei(a1Nt+a2Ns)

)
EP

(
ei(b1Wt+b2Ws)

)
.

This means that the random variables (Nt, Ns) and (Wt,Ws) are mutually independent. By proceed-
ing along the same lines, one may check that the random variables (Nt1 , . . . , Ntn) and (Wt1 , . . . , Wtn)
are mutually independent for any n ∈ N and for any choice of 0 ≤ t1 < · · · < tn. 2

Let us now examine the behavior of the Poisson process under a specific equivalent change of
the underlying probability measure. For a fixed T > 0, we introduce a probability measure P∗ on
(Ω,GT ) by setting

dP∗

dP

∣∣∣
GT

= ηT , P-a.s., (3.2)

where the Radon-Nikodým density process ηt, t ∈ [0, T ], satisfies

dηt = ηt−κ dN̂t, η0 = 1, (3.3)

for some constant κ > −1. Since Y := κN̂ is a process of finite variation, (3.3) admits a unique
solution, denoted as Et(Y ) or Et(κN̂); it can be seen as a special case of the Doléans (or stochastic)
exponential. By solving (3.3) path-by-path, we obtain

ηt = Et(κN̂) = eYt

∏

0<u≤t

(1 + ∆Yu)e−∆Yu = eY c
t

∏

0<u≤t

(1 + ∆Yu),

where Y c
t := Yt −

∑
0<u≤t ∆Yu is the path-by-path continuous part of Y. Direct calculations show

that
ηt = e−κλt

∏

0<u≤t

(1 + κ∆Nu) = e−κλt(1 + κ)Nt = eNt ln(1+κ)−κλt,

where the last equality holds if κ > −1. Upon setting a = ln(1 + κ) in part (iii) of Proposition 3.2,
we get Ma = η; this confirms that the process η follows a G-martingale under P. We have thus
proved the following result.
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Lemma 3.1 Assume that κ > −1. The unique solution η to the SDE (3.3) follows an exponential
G-martingale under P. Specifically,

ηt = eNt ln(1+κ)−κλt = eN̂t ln(1+κ)−λt(κ−ln(1+κ)) = Ma
t , (3.4)

where a = ln(1+κ). In particular, the random variable ηT is strictly positive, Pa.s. and EP(ηT ) = 1.
Furthermore, the process Ma solves the following SDE:

dMa
t = Ma

t−(ea − 1) dN̂t, Ma
0 = 1. (3.5)

We are in the position to establish the well-known result, which states that under P∗ the process
Nt, t ∈ [0, T ], follows a Poisson process with the constant intensity λ∗ = (1 + κ)λ.

Proposition 3.4 Assume that under P a process N is a Poisson process with intensity λ with respect
to the filtration G. Suppose that the probability measure P∗ is defined on (Ω,GT ) through (3.2) and
(3.3) for some κ > −1.
(i) The process Nt, t ∈ [0, T ], follows a Poisson process under P∗ with respect to G with the constant
intensity λ∗ = (1 + κ)λ.
(ii) The compensated process N∗

t , t ∈ [0, T ], defined as

N∗
t = Nt − λ∗t = Nt − (1 + κ)λt = N̂t − κλt,

follows a P∗-martingale with respect to G.

Proof. From remark (iii) after Proposition 3.2, we know that it suffices to find λ∗ such that, for any
fixed b ∈ R, the process M̃ b, given as

M̃ b
t := ebNt−λ∗t(eb−1), ∀ t ∈ [0, T ], (3.6)

follows a G-martingale under P∗. By standard arguments, the process M̃ b is a P∗-martingale if and
only if the product M̃ bη is a martingale under the original probability measure P. But in view of
(3.4), we have

M̃ b
t ηt = exp

(
Nt

(
b + ln(1 + κ)

)− t
(
κλ + λ∗(eb − 1)

))
.

Let us write a = b + ln(1 + κ). Since b is an arbitrary real number, so is a. Then, by virtue of part
(iii) in Proposition 3.2, we necessarily have

κλ + λ∗(eb − 1) = λ(ea − 1).

After simplifications, we conclude that, for any fixed real number b, the process M̃ b defined by (3.6)
is a G-martingale under P∗ if and only if λ∗ = (1 + κ)λ. In other words, the intensity λ∗ of N under
P∗ satisfies λ∗ = (1 + κ)λ. Also the second statement is clear. 2

Remarks. Assume that G = FN , i.e., the filtration G is generated by some Poisson process N. Then
any strictly positive G-martingale η under P is known to satisfy SDE (3.3) for some G-predictable
process κ.

Assume that W is a Brownian motion and N follows a Poisson process under P with respect to
G. Let η satisfy

dηt = ηt−
(
βt dWt + κ dN̂t

)
, η0 = 1, (3.7)
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for some G-predictable stochastic process β and some constant κ > −1. A simple application of the
Itô’s product rule shows that if processes η1 and η2 satisfy:

dη1
t = η1

t−βt dWt, dη2
t = η2

t−κ dN̂t,

then the product ηt := η1
t η2

t satisfies (3.7). Taking the uniqueness of solutions to the linear SDE
(3.7) for granted, we conclude that the unique solution to this SDE is given by the expression:

ηt = exp
( ∫ t

0

βu dWu − 1
2

∫ t

0

β2
u du

)
exp

(
Nt ln(1 + κ)− κλt

)
. (3.8)

The proof of the next result is left to the reader as exercise.

Proposition 3.5 Let the probability P∗ be given by (3.2) and (3.8) for some constant κ > −1 and
a G-predictable process β, such that EP(ηT ) = 1.

(i) The process W ∗
t = Wt−

∫ t

0
βu du, t ∈ [0, T ], follows a Brownian motion under P∗, with respect to

the filtration G.
(ii) The process Nt, t ∈ [0, T ], follows a Poisson process with the constant intensity λ∗ = (1 + κ)λ
under P∗, with respect to the filtration G.
(iii) Processes W ∗ and N are mutually independent under P∗.

3.2 Poisson Process with Deterministic Intensity

Let λ : R+ → R+ be any non-negative, locally integrable function such that
∫∞
0

λ(u) du = ∞. By
definition, the process N (with N0 = 0) is the Poisson process with intensity function λ if for every
0 ≤ s < t the increment Nt − Ns is independent of the σ-field Gs, and has the Poisson law with
parameter Λ(t)− Λ(s), where the hazard function Λ equals Λ(t) =

∫ t

0
λ(u) du.

More generally, let Λ : R+ → R+ be a right-continuous, increasing function with Λ(0) = 0 and
Λ(∞) = ∞. The Poisson process with the hazard function Λ satisfies, for every 0 ≤ s < t and every
k = 0, 1, . . .

P{Nt −Ns = k | Gs} = P{Nt −Ns = k} =
(Λ(t)− Λ(s))k

k!
e−(Λ(t)−Λ(s)).

Example 3.1 The most convenient and widely used method of constructing a Poisson process with
a hazard function Λ runs as follows: we take a Poisson process Ñ with the constant intensity
λ = 1, with respect to some filtration G̃, and we define the time-changed process Nt := ÑΛ(t). The
process N is easily seen to follow a Poisson process with the hazard function Λ, with respect to the
time-changed filtration G, where Gt = G̃Λ(t) for every t ∈ R+.

Since for arbitrary 0 ≤ s < t

EP(Nt −Ns | Gs) = EP(Nt −Ns) = Λ(t)− Λ(s),

it is clear that the compensated Poisson process N̂t = Nt − Λ(t) follows a G-martingale under P.
A suitable generalization of Proposition 3.3 shows that a Poisson process with the hazard function
Λ and a Brownian motion with respect to G follow mutually independent processes under P. The
proof of the next lemma relies on a direct application of the Itô formula, and so it is omitted.
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Lemma 3.2 Let Z be an arbitrary bounded, G-predictable process. Then the process MZ , given by
the formula

MZ
t = exp

( ∫

]0,t]

Zu dNu −
∫ t

0

(eZu − 1) dΛ(u)
)
,

follows a G-martingale under P. Moreover, MZ is the unique solution to the SDE

dMZ
t = MZ

t−(eZt − 1) dN̂t, MZ
0 = 1.

In case of a Poisson process with intensity function λ, it can be easily deduced from Lemma 3.2
that, for any (Borel measurable) function κ : R+ → (−1,∞), the process

ζt = exp
(∫

]0,t]

ln(1 + κ(u)) dNu −
∫ t

0

κ(u)λ(u) du
)

is the unique solution to the SDE

dζt = ζt−κ(t) dN̂t, η0 = 1.

Using similar arguments as in the case of constant κ, one can show that the unique solution to the
SDE

dηt = ηt−
(
βt dWt + κ(t) dN̂t

)
, η0 = 1,

is given by the following expression:

ηt = ζt exp
(∫ t

0

βu dWu − 1
2

∫ t

0

β2
u du

)
. (3.9)

The next result generalizes Proposition 3.5. Again, the proof is left to the reader.

Proposition 3.6 Let P∗ be a probability measure equivalent to P on (Ω,GT ), such that the density
process η in (3.2) is given by (3.9). Then, under P∗ and with respect to G :
(i) the process W ∗

t = Wt −
∫ t

0
βu du, t ∈ [0, T ], follows a Brownian motion,

(ii) the process Nt, t ∈ [0, T ], is a Poisson process with the intensity function λ∗(t) = 1 + κ(t)λ(t),
(iii) processes W ∗ and N are mutually independent under P∗.

3.3 Conditional Poisson Process

We start by assuming that we are given a filtered probability space (Ω,G,P) and a certain sub-
filtration F of G. Let Φ be an F-adapted, right-continuous, increasing process, with Φ0 = 0 and
Φ∞ = ∞. We refer to Φ as the hazard process. In some cases, we have Φt =

∫ t

0
φu du for some

F-progressively measurable process φ with locally integrable sample paths. Then the process φ is
called the intensity process. We are in a position to state the definition of the F-conditional Poisson
process associated with Φ. Slightly different, but essentially equivalent, definition of a conditional
Poisson process (also known as the doubly stochastic Poisson process) can be found in Brémaud
(1981) and Last and Brandt (1995).

Definition 3.2 A process N defined on a probability space (Ω,G,P) is called the F-conditional
Poisson process with respect to G, associated with the hazard process Φ, if for any 0 ≤ s < t and
every k = 0, 1, . . .

P{Nt −Ns = k | Gs ∨ F∞} =
(Φt − Φs)k

k!
e−(Φt−Φs), (3.10)

where F∞ = σ(Fu : u ∈ R+).
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At the intuitive level, if a particular sample path Φ·(ω) of the hazard process is known, the process
N has exactly the same properties as the Poisson process with respect to G with the (deterministic)
hazard function Φ·(ω). In particular, it follows from (3.10) that

P{Nt −Ns = k | Gs ∨ F∞} = P{Nt −Ns = k | F∞},
i.e., conditionally on the σ-field F∞ the increment Nt −Ns is independent of the σ-field Gs.

Similarly, for any 0 ≤ s < t ≤ u and every k = 0, 1, . . . , we have

P{Nt −Ns = k | Gs ∨ Fu} =
(Φt − Φs)k

k!
e−(Φt−Φs). (3.11)

In other words, conditionally on the σ-field Fu the process Nt, t ∈ [0, u], behaves like a Poisson
process with the hazard function Φ. Finally, for any n ∈ N, any non-negative integers k1, . . . , kn,
and arbitrary non-negative real numbers s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sn < tn we have

P
( n⋂

i=1

{Nti
−Nsi

= ki}
)

= EP
( n∏

i=1

(
Φti

− Φsi

)ki

ki!
e−(Φti

−Φsi
)
)
.

Let us notice that in all conditional expectations above, the reference filtration F can be replaced
by the filtration FΦ generated by the hazard process. In fact, an F-conditional Poisson process with
respect to G follows also a conditional Poisson process with respect to the filtrations: FN ∨ F and
FN ∨ FΦ (with the same hazard process).

We shall henceforth postulate that EP(Φt) < ∞ for every t ∈ R+.

Lemma 3.3 The compensated process N̂t = Nt − Φt follows a martingale with respect to G.

Proof. It is enough to notice that, for arbitrary 0 ≤ s < t,

EP(Nt − Φt | Gs) = EP(EP(Nt − Φt | Gs ∨ F∞) | Gs) = EP(Ns − Φs | Gs) = Ns − Φs,

where in the second equality we have used the property of a Poisson process with deterministic
hazard function. 2

Given the two filtrations F and G and the hazard process Φ, it is not obvious whether we may find
a process N, which would satisfy Definition 3.2. To provide a simple construction of a conditional
Poisson process, we assume that the underlying probability space (Ω,G,P), endowed with a reference
filtration F, is sufficiently large to accommodate for the following stochastic processes: a Poisson
process Ñ with the constant intensity λ = 1 and an F-adapted hazard process Φ. In addition, we
postulate that the Poisson process Ñ is independent of the filtration F

Remark. Given a filtered probability space (Ω,F,P), it is always possible to enlarge it in such a way
that there exists a Poisson process Ñ with λ = 1, independent of the filtration F, and defined on
the enlarged space.

Under the present assumptions, for every 0 ≤ s < t, any u ∈ R+, and any non-negative integer
k, we have

P{Ñt − Ñs = k | F∞} = P{Ñt − Ñs = k | Fu} = P{Ñt − Ñs = k}
and

P{Ñt − Ñs = k | F Ñ
s ∨ Fs} = P{Ñt − Ñs = k} =

(t− s)k

k!
e−(t−s).

The next result describes an explicit construction of a conditional Poisson process. This con-
struction is based on a random time change associated with the increasing process Φ.
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Proposition 3.7 Let Ñ be a Poisson process with the constant intensity λ = 1, independent of
a reference filtration F, and let Φ be an F-adapted, right-continuous, increasing process. Then the
process Nt = ÑΦt , t ∈ R+, follows the F-conditional Poisson process with the hazard process Φ with
respect to the filtration G = FN ∨ F.

Proof. Since Gs ∨ F∞ = FN
s ∨ F∞, it suffices to check that

P{Nt −Ns = k | FN
s ∨ F∞} =

(Φt − Φs)k

k!
e−(Φt−Φs)

or, equivalently,

P{ÑΦt
− ÑΦs

= k | F Ñ
Φs
∨ F∞} =

(Φt − Φs)k

k!
e−(Φt−Φs).

The last equality follows from the assumed independence of Ñ and F. 2

Remark. Within the setting of Proposition 3.7, any F-martingale is also a G-martingale, so that
Condition (M.1) is satisfied.

The total number of jumps of the conditional Poisson process is obviously unbounded with
probability 1. In some financial models, only the properties of the first jump are relevant, though.
There exist many ways of constructing the conditional Poisson process, but Condition (F.1) is always
satisfied by the first jump of such a process, since it follows directly from Definition 3.2. In effect,
if we denote τ = τ1, then for any t ∈ R+ and u ≥ t we have:

P{τ ≤ t | Fu} = P{Nt ≥ 1 | Fu} = P{Nt −N0 ≥ 1 | G0 ∨ Fu} = P{τ ≤ u | F∞},

where the last equality follows from (3.11). It is also clear, once more by (3.11), that P{τ ≤ t | Fu} =
e−Φu for every 0 ≤ t ≤ u.

Example 3.2 Cox process. In some applications, it is natural to consider a special case of an
F-conditional Poisson process, with the filtration F generated by a certain stochastic process, repre-
senting the state variables. To be more specific, on considers a conditional Poisson process with the
intensity process φ given as φt = g(t, Yt), where Y is an Rd-valued stochastic process independent
of the Poisson process Ñ , and g : R+×Rd → R+ is a (continuous) function. The reference filtration
F is typically chosen to be the natural filtration of the process Y ; that is, we take F = FY . In such
a case, the resulting F-conditional Poisson process is referred to as the Cox process associated with
the state variables process Y, and the intensity function g.

Our last goal is to examine the behavior of an F-conditional Poisson process N under an equivalent
change of a probability measure. Let us assume, for the sake of simplicity, that the hazard process Φ
is continuous, and the reference filtration F is generated by a process W, which follows a Brownian
motion with respect to G. For a fixed T > 0, we define the probability measure P∗ on (Ω,GT ) by
setting:

dP∗

dP

∣∣∣
GT

= ηT , P-a.s., (3.12)

where the Radon-Nikodým density process ηt, t ∈ [0, T ], solves the SDE

dηt = ηt−
(
βt dWt + κt dN̂t

)
, η0 = 1, (3.13)

for some G-predictable processes β and κ such that κ > −1 and EP(ηT ) = 1. An application
of Itô’s product rule shows that the unique solution to (3.13) is equal to the product νtζt, where
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dνt = νtβt dWt and dζt = ζt−κt dN̂t, with ν0 = ζ0 = 1. The solutions to the last two equations are

νt = exp
( ∫ t

0

βu dWu − 1
2

∫ t

0

β2
u du

)

and
ζt = exp (Ut)

∏

0<u≤t

(1 + ∆Uu) exp (−∆Uu),

respectively, where we denote Ut =
∫
]0,t]

κu dN̂u. It is useful to observe that ζ admits the following
representations:

ζt = exp
(
−

∫ t

0

κu dΦu

) ∏

0<u≤t

(1 + κu∆Nu),

and

ζt = exp
( ∫

]0,t]

ln(1 + κu) dNu −
∫ t

0

κu dΦu

)
.

Proposition 3.8 Let the Radon-Nikodým density of P∗ with respect to P be given by (3.12)–(3.13).
Then the process W ∗

t = Wt−
∫ t

0
βu du, t ∈ [0, T ], follows a Brownian motion with respect to G under

P∗, and the process

N∗
t = N̂t −

∫ t

0

κu dΦu = Nt −
∫ t

0

(1 + κu) dΦu, ∀ t ∈ [0, T ], (3.14)

follows a G-martingale under P∗. If, in addition, the process κ is F-adapted, then the process N
follows under P∗ an F-conditional Poisson process with respect to G, and the hazard process of N
under P∗ equals

Φ∗t =
∫ t

0

(1 + κu) dΦu.
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Credit Risk Modelling: Lecture 4

4 Defaultable Claims

We fix a finite horizon date T ∗ > 0, and we suppose that the underlying probability space
(Ω,F ,P), endowed with some filtration F = (Ft)0≤t≤T∗ , is sufficiently rich to support the
following objects:
• the short-term interest rate process r,

• the firm’s value process V, which models the total value of the firm’s assets,

• the barrier process v, which will serve to specify the default time,

• the promised contingent claim X representing the firm’s liabilities to be redeemed at time
T ≤ T ∗,

• the process A, which models the promised dividends, i.e., the firm’s liabilities stream that
is redeemed continuously or discretely over time to the holder of a defaultable claim,

• the recovery claim X̃, which represents the recovery payoff received at time T, if default
occurs prior to or at the claim’s maturity date T,

• the recovery process Z, which specifies the recovery payoff at time of default, if it occurs
prior to or at the maturity date T.

The probability measure P is assumed to represent the real-world (or statistical ) probability, as
opposed to the spot martingale measure (or the risk-neutral probability). The latter probability
is denoted by P∗ in what follows.

4.1 Technical Assumptions

We postulate that the processes V, Z, A, and v are progressively measurable with respect to
the filtration F, and that the random variables X and X̃ are FT -measurable. In addition, A is
assumed to be a process of finite variation, with A0 = 0. We assume without mentioning that
all random objects introduced above satisfy suitable integrability conditions that are needed
for evaluating the functionals defined in the sequel.

4.2 Default Time

Let us denote by τ the random time of default. At this stage, it is essential to stress that the
various approaches to valuing and hedging of defaultable securities differ between themselves
with regard to the ways in which the default event – and thus also the default time τ – are
modeled. In the structural approach, the default time τ will be typically defined in terms of the
value process V and the barrier process v. Specifically, we shall set

τ := inf { t > 0 : t ∈ T , Vt < vt} (4.1)

with the usual convention that the infimum over the empty set equals +∞. In (4.1), the set
T is assumed to be a Borel measurable subset of the time interval [0, T ] (or [0,∞) in the case
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of perpetual claims). From the mathematical standpoint, we shall frequently be justified in
substituting the strict inequality ‘<’ with the ‘≤’ in (4.1), and in analogous definitions, without
altering the probabilistic content of the definition. Furthermore, τ will be an F-stopping time,
and since the underlying filtration F in most structural models is generated by a standard
Brownian motion, τ will be an F-predictable stopping time (as any stopping time with respect
to a Brownian filtration).
The latter property means that within the framework of the structural approach there exists a
sequence of increasing stopping times announcing the default time; in this sense, the default time
can be forecasted with some degree of certainty. By contrast, in the intensity-based approach,
the default time will not be a predictable stopping time with respect to the ‘enlarged’ filtration,
denoted by G in Part III of the text. In typical examples, the filtration G will encompass some
Brownian filtration F, but G will be strictly larger than F. At the intuitive level, in the intensity-
based approach the occurrence of the default event comes as a total surprise. For any date t,
the present value of the default intensity yields the conditional probability of the occurrence of
default over an infinitesimally small time interval [t, t + dt].

4.3 Recovery Rules

If default occurs after time T, the promised claim X is paid in full at time T. Otherwise,
depending on the adopted model, either the amount Zτ is paid at time τ, or the amount X̃ is paid
at the maturity date T. In a general setting, we consider simultaneously both kinds of recovery
payoff, and thus a defaultable claim is formally defined as a quintuple DCT = (X,A, X̃, Z, τ).
In most practical situations, however, we shall deal with only one type of recovery payoff – that
is, we shall set either X̃ = 0 or Z ≡ 0. Thus, a typical defaultable claim can be seen either the
quadruplet DCT 1 = (X, A, X̃, τ) or as DCT 2 = (X, A,Z, τ), depending on the recovery scheme.
The former is called a defaultable claim with recovery at maturity (DCT of the first type), and
the latter a defaultable claim with recovery at default (DCT of the second type). The absence
of the superscript i suggests that a particular expression is valid for a generic defaultable claim.
Notice that the date T, the information structure F and the real-world probability P are also
intrinsic components of the definition of a defaultable claim.

4.4 Risk-Neutral Valuation Formula

Suppose now that our underlying financial market model is arbitrage-free, in the sense that
there exists a spot martingale measure P∗ (also referred to as a risk-neutral probability), meaning
that price process of any tradeable security, which pays no coupons or dividends, follows an
F-martingale under P∗, when discounted by the savings account B, given as

Bt := exp
( ∫ t

0

ru du
)
.

We introduce the process Ht = 11{τ≤t}, and we denote by D the process that models all the cash
flows received by the owner of a defaultable claim. Let us set Xd(T ) = X11{τ>T} + X̃11{τ≤T}.

Definition 4.1 The dividend process D of a defaultable contingent claim DCT =
(X, A, X̃, Z, τ), which settles at time T, equals

Dt = Xd(T )11{t≥T} +
∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu.
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It is clear that D is a process of finite variation over [0, T ]. Since
∫

]0,t]

(1−Hu) dAu =
∫

]0,t]

11{τ>u} dAu = Aτ−11{τ≤t} + At11{τ>t},

it is apparent that in case the default occurs at some date t, the promised dividend At − At−,
that is due to be paid at this date, is not actually passed over to the holder of a defaultable
claim. Furthermore, we have

∫

]0,t]

Zu dHu = Zτ∧t11{τ≤t} = Zτ11{τ≤t},

where τ ∧ t = min (τ, t). At the formal level, the promised payoff X could be considered as a
part of the promised dividends process A. However, such a convention would be inconvenient,
since in practice the recovery rules concerning the promised dividends A and the promised
claim X are generally different. For instance, in the case of a defaultable coupon bond, it is
frequently postulated that in case of default the future coupons are lost (formally, they are
subject to the zero recovery scheme), but a strictly positive fraction of the bond’s face value
is usually received by the bondholder. We adopt the following definition of the ex-dividend
price Xd(t, T ) of a defaultable claim. At any time t, the random variable Xd(t, T ) is meant to
represent the current value of all future cash flows associated with a given defaultable claim
DCT. In particular, we always have Xd(T, T ) = 0. A formal justification for expression (4.2) is
postponed to Sect. 4.6.

Definition 4.2 The (ex-dividend) price process of the defaultable claim DCT =
(X, A, X̃, Z, τ), which settles at time T, is given as

Xd(t, T ) = Bt EP∗
( ∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
, ∀ t ∈ [0, T ]. (4.2)

One easily recognizes (4.2) as a variant of the risk-neutral valuation formula that is known to give
the arbitrage price of attainable contingent claims. Attainability of a defaultable claim DCT
is not obvious, though. Structural models typically assume that assets of the firm represent a
tradeable security (in practice, the total market value of firm’s shares is usually taken as the
proxy for V ). Consequently, the issue of existence of replicating strategies for defaultable claims
can be analyzed in a similar way as in standard default-free financial models. In particular,
it is essential to assume that the reference filtration F is generated by the price processes of
tradeable assets. Otherwise, for instance, when the default time τ is the first passage time of V
to a lower threshold, which does not represent the price of a tradeable asset (so that τ is not
a stopping time with respect to the filtration generated by some tradeable assets), the issue of
attainability of defaultable contingent claims becomes more delicate. To summarize, the validity
of the valuation formula (4.2) is not obvious a priori, so that it needs to be examined on a case
by case basis.

For the ease of future reference, we shall now examine in some detail the two special cases
of expression (4.2). It follows immediately from (4.2) that the price process Xd,i(·, T ) of a
defaultable claim DCT i equals, for i = 1, 2:

Xd,i(t, T ) := Bt EP∗
( ∫

]t,T ]

B−1
u dDi

u

∣∣∣Ft

)
, (4.3)
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where
D1

t =
(
X11{τ>T} + X̃11{τ≤T}

)
11{t≥T} +

∫

]0,t]

(1−Hu) dAu,

and
D2

t = X11{τ>T}11{t≥T} +
∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu.

Consider first a defaultable claim with recovery at maturity – that is, the claim DCT 1. In the
absence of the promised dividends (i.e., when A ≡ 0), the valuation formula (4.3) becomes, for
0 ≤ t < T,

Xd,1(t, T ) := Bt EP∗
(
B−1

T Xd,1(T )
∣∣Ft

)
, (4.4)

where the terminal payoff Xd,1(T ), which equals

Xd,1(T ) = X11{τ>T} + X̃11{τ≤T}, (4.5)

represents the cash flow at time T of a given defaultable claim with recovery at maturity.
It is thus clear that, in the absence of promised dividends, the discounted price process
Xd,1(t, T )/Bt, t < T, follows an F-martingale under P∗, provided, of course, that a usual
integrability condition is imposed on Xd,1(T ).

4.5 Self-Financing Trading Strategies

We are now going to provide a formal justification of Definition 4.2, based on the no-arbitrage
arguments. We write Si, i = 1, . . . , k to denote the price processes of k primary securities in
an arbitrage-free financial model. We make the standard assumption that the processes Si, i =
1, . . . , k− 1 follow semimartingales. In addition, we set Sk

t = Bt so that Sk represents the value
process of the savings account. For the sake of convenience, we assume that Si, i = 1, . . . , k− 1
are non-dividend-paying assets, and we introduce the discounted price processes S̃i by setting
S̃i

t = Si
t/Bt.

Let us now also assume that we have an additional security that pays dividends during its
lifespan – assumed to be the time interval [0, T ] – according to a process of finite variation D,
with D0 = 0. Let S0 denote the yet unspecified price process of this security. In particular, we
refrain from postulating that S0 follows a semimartingale. Of course, we do not necessarily need
to interpret S0 as the value process of a defaultable claim, though we have here this particular
interpretation in mind.
Let an F-predictable process φ = (φ0, . . . , φk) stand for a trading strategy. At this stage, it will
be enough to examine a simple trading strategy involving a defaultable claim. In fact, since we
do not assume a priori that S0 follows a semimartingale, we are not yet in a position to consider
general trading strategies involving the defaultable claim anyway.
Suppose that we purchase at time 0 one unit of the 0th asset at the initial price S0

0 , we hold
it until time T, and we invest all the proceeds from dividends in a savings account. More
specifically, we consider a buy-and-hold strategy ψ = (1, 0, . . . , 0, ψk). The associated wealth
process U(ψ) equals:

Ut(ψ) = S0
t + ψk

t Bt, ∀ t ∈ [0, T ], (4.6)
with some initial value U0(ψ) = S0

0 + ψk
0 . We assume that the strategy ψ introduced above is

self-financing; i.e., we postulate that for every t ∈ [0, T ]

Ut(ψ)− U0(ψ) = S0
t − S0

0 + Dt +
∫

]0,t]

ψk
u dBu. (4.7)
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Lemma 4.1 The discounted wealth Ũt(ψ) = B−1
t Ut(ψ) of a self-financing trading strategy ψ

satisfies, for every t ∈ [0, T ],

Ũt(ψ) = Ũ0(ψ) + S̃0
t − S̃0

0 +
∫

]0,t]

B−1
u dDu. (4.8)

Proof. We define an auxiliary process Û(ψ) by setting Ût(ψ) := Ut(ψ) − S0
t = ψk

t Bt. In view
of (4.7), we have

Ût(ψ) = Û0(ψ) + Dt +
∫

]0,t]

ψk
u dBu,

and so the process Û(ψ) follows a semimartingale.

An application of Itô’s product rule yields

d
(
B−1

t Ût(ψ)
)

= B−1
t dÛt(ψ) + Ût(ψ) dB−1

t

= B−1
t dDt + ψk

t B−1
t dBt + ψk

t Bt dB−1
t

= B−1
t dDt,

where we have used the obvious equality B−1
t dBt + Bt dB−1

t = 0. Integrating the last equality,
we obtain

B−1
t

(
Ut(ψ)− S0

t

)
= B−1

0

(
U0(ψ)− S0

0

)
+

∫

]0,t]

B−1
u dDu,

and this immediately yields (4.8). 2

In view of Lemma 4.1, for every t ∈ [0, T ] we also have:

ŨT (ψ)− Ũt(ψ) = S̃0
T − S̃0

t +
∫

]t,T ]

B−1
u dDu. (4.9)

4.6 Martingale Measures

We are ready to derive the risk-neutral valuation formula for the ex-dividend price S0
t . To

this end, we assume that our model is arbitrage-free, meaning here that it admits a (not
necessarily unique) spot martingale measure P∗ equivalent to P. In particular, this implies that
the discounted price S̃i of any non-dividend paying primary security, as well as the discounted
wealth process Ũ(φ) of any admissible self-financing trading strategy φ = (0, φ1, . . . , φk), follow
martingales under P∗. In addition, we postulate that the trading strategy ψ introduced in Sect.
4.5 is also admissible, so that the discounted wealth process Ũ(ψ) follows a P∗-martingale with
respect to the filtration F.

We make an assumption that the market value at time t of the 0th security comes exclusively
from the future dividends stream; this amounts to postulate that S0

T = S̃0
T = 0. In view of

this convention, we shall refer to S0 as the ex-dividend price of the 0th asset, e.g., a defaultable
claim.

Proposition 4.1 The ex-dividend price process S0 satisfies, for t ∈ [0, T ],

S0
t = Bt EP∗

(∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
. (4.10)
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Proof. In view of the martingale property of the discounted wealth process Ũ(ψ), for any
t ∈ [0, T ] we have

EP∗
(
ŨT (ψ)− Ũt(ψ)

∣∣Ft

)
= 0.

Taking into account (4.9), we thus obtain

S̃0
t = EP∗

(
S̃0

T +
∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
.

Since by assumption S0
T = S̃0

T = 0, the last formula yields (4.10). 2

Let us now examine a general trading strategy φ = (φ0, . . . , φk). The associated wealth process
U(φ) equals Ut(φ) =

∑k
i=0 φi

tS
i
t . A strategy φ is said to be self-financing if Ut(φ) = U0(φ) +

Gt(φ) for every t ∈ [0, T ], where the gains process G(φ) is defined as follows:

Gt(φ) :=
∫

]0,t]

φ0
u dDu +

k∑

i=0

∫

]0,t]

φi
u dSi

u.

Corollary 4.1 For any self-financing trading strategy φ, the discounted wealth process Ũ(φ) :=
B−1

t Ut(φ) follows a local martingale under P∗.

Proof. Since B is a continuous process of finite variation, Itô’s product rule gives

dS̃i
t = Si

t dB−1
t + B−1

t dSi
t

for i = 0, . . . , k, and so

dŨt(φ) = Ut(φ) dB−1
t + B−1

t dUt(φ)

= Ut(φ) dB−1
t + B−1

t

( k∑

i=0

φi
t dSi

t + φ0
t dDt

)

=
k∑

i=0

φi
t

(
Si

t dB−1
t + B−1

t dSi
t

)
+ φ0

t B
−1
t dDt

=
k−1∑

i=1

φi
t dS̃i

t + φ0
t

(
dS̃0

t + B−1
t dDt

)
=

k−1∑

i=1

φi
t dS̃i

t + φ0
t dŜ0

t ,

where the process Ŝ0 is given by the formula

Ŝ0
t := S̃0

t +
∫

]0,t]

B−1
u dDu.

To conclude, it suffices to observe that in view of (4.10) the process Ŝ0 satisfies

Ŝ0
t = EP∗

(∫

]0,T ]

B−1
u dDu

∣∣∣Ft

)
,

and thus it follows a martingale under P∗. 2

It is worth noticing that Ŝ0
t represents the discounted cum-dividend price at time t of the 0th

asset.
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WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Mathematics and Information Science

Credit Risk Modelling: Lecture 5

5 Merton’s (1974) Model of Corporate Debt

In his pathbreaking paper, Merton (1974) considers a firm with a single liability carrying a
promised (deterministic) terminal payoff L. Several standard conditions are imposed on the
continuous-time Black-Scholes-type frictionless market. Let us recall the most important as-
sumptions:

• trading takes place continuously in time,

• all traded assets are infinitely divisible,

• an unrestricted borrowing and lending of funds is possible at the same interest rate,

• no restrictions on the short-selling of traded securities are present,

• the transaction costs and taxes (or tax benefits) are disregarded,

• the bankruptcy and/or reorganization costs in case of default are negligible.

5.1 Merton’s Model with Deterministic Interest Rates

One of the simplifying assumptions in the original Merton’s model is that the short-term interest
rate is constant and equals r. Therefore, the price at time t of the unit default-free zero-coupon
bond with maturity T is easily seen to be B(t, T ) = e−r(T−t). The latter formula can be extended
to the case of a deterministic continuously compounded interest rate r : R+ → R. In this case,
the price of a T -maturity zero-coupon bond equals:

B(t, T ) = exp
(
−

∫ T

t

r(u) du
)
, ∀ t ∈ [0, T ].

In the sequel, we denote by E(Vt) (D(Vt), resp.) the value of the firm’s equity (debt, resp.) at
time t; hence, the total value of firm’s assets satisfies Vt = E(Vt)+D(Vt). We postulate that the
firm’s value process V follows a geometric Brownian motion under the spot martingale measure
P∗, specifically,

dVt = Vt

(
(r − κ) dt + σV dW ∗

t

)
, (5.1)

where σV is the constant volatility coefficient of the value process V and the constant κ repre-
sents the payout ratio, provided that it is non-negative. Otherwise, κ reflects an inflow of capital
to the firm. The process W ∗ is the one-dimensional standard Brownian motion under P∗, with
respect to some reference filtration F (it is common to take F = FW∗

; this is not essential,
though). Notice that dynamics (5.1) is justified only under the assumption that the total value
of the firm’s assets represents a traded security.

We postulate that the default event may only occur at the debt’s maturity date T. Specifically,
if at the maturity T the total value VT of the firm’s assets is less than the notional value L of
the firm’s debt, the firm defaults and the bondholders receive the amount VT .



Credit Risk Modelling 43

Otherwise, the firm does not default, and its liability is repaid in full. We are thus dealing here
with a rather elementary example of a defaultable claim with recovery at maturity.

In terms of our generic model, we have:

X = L, A ≡ 0, X̃ = VT , τ = T11{VT <L} +∞11{VT≥L},

where, as usual, ∞× 0 = 0. Put another way,

Xd,1(T ) = L11{τ>T} + VT 11{τ≤T} = L11{VT≥L} + VT 11{VT <L}

or, equivalently,

Xd,1(T ) = min (VT , L)11{VT≥L} + min (VT , L)11{VT <L} = min (VT , L).

The fixed amount L may be interpreted as the face value (or par value) of a corporate zero-
coupon bond maturing at time T. Since

Xd,1(T ) = min (VT , L) = L− (L− VT )+,

where x+ = max(x, 0) for every x ∈ R, the price process Xd,1(t, T ) of a defaultable zero-coupon
bond is manifestly equal to the difference of the value of a default-free zero-coupon bond with
the face value L and the value of a European put option written on the firm’s assets, with the
strike price L and the exercise date T. This put option, with the terminal payoff (L− VT )+, is
commonly referred in the present context as the put-to-default. Formally, the value of the firm’s
debt at time t thus equals

D(Vt) = D(t, T ) = LB(t, T )− Pt, (5.2)

where Pt is the price of the put-to-default, and where, for the sake of notational convenience,
we write D(t, T ) to denote the price of a defaultable bond:

D(t, T ) := Xd,1(t, T ) = Bt EP∗(B−1
T Xd,1(T ) | Ft).

It is apparent from (5.2) that the value at time t of the firm’s equity satisfies

E(Vt) = Vt −D(Vt) = Vt − LB(t, T ) + Pt = Ct, (5.3)

where Ct stands in turn for the price at time t of a call option written on the firm’s assets, with
the strike price L and the exercise date T. To justify the last equality in (5.3), we may observe
that at time T we have

E(VT ) = VT −D(VT ) = VT −min (VT , L) = (VT − L)+,

and thus the firm’s equity can be seen as a call option on the firm’s assets. Alternatively, we
may directly use the so-called put-call parity relationship for European-style options:

Ct − Pt = Vt − LB(t, T ).

Combining (5.2) with the classic Black-Scholes formula for the arbitrage price of a European
put option, Merton (1974) derived a closed-form expression for the arbitrage price of a corporate
bond. In what follows, N denotes the standard Gaussian cumulative distribution function:

N(x) =
1√
2π

∫ x

−∞
e−u2/2 du, ∀x ∈ R.
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Proposition 5.1 For every 0 ≤ t < T we have

D(t, T ) = Vte
−κ(T−t)N

(− d1(Vt, T − t)
)

+ LB(t, T )N
(
d2(Vt, T − t)

)
, (5.4)

where

d1,2(Vt, T − t) =
ln(Vt/L) +

(
r − κ± 1

2σ2
V

)
(T − t)

σV

√
T − t

. (5.5)

Proof. Suppose first that we take the classic Black-Scholes options valuation formula for granted.
Recall that the Black-Scholes price of a European put option with the strike price L, written
on a dividend-paying stock equals:

Pt = LB(t, T )N
(− d2(Vt, T − t)

)− Vte
−κ(T−t)N

(− d1(Vt, T − t)
)
,

so that

D(t, T ) = Vte
−κ(T−t)N

(− d1(Vt, T − t)
)

+ LB(t, T )
(
1−N

(− d2(Vt, T − t)
))

.

Since obviously N(−x) = 1−N(x), the last expression is easily seen to be equivalent to Merton’s
formula (5.4).

For the reader’s convenience, we provide below the direct derivation of expression (5.4), based
on the risk-neutral valuation formula:

S0
t = Bt EP∗

(∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
.

For the sake of notational convenience, we shall write σ rather than σV , and we denote r̃ = r−κ.
When applied to a defaultable bond, the last formula yields, for every 0 ≤ t < T,

D(t, T ) = B(t, T )EP∗
(
L11{VT≥L} + VT 11{VT <L}

∣∣Ft

)
,

so that
D(t, T ) = LB(t, T )P∗{VT ≥ L | Ft}+ B(t, T )EP∗(VT 11{VT <L} | Ft). (5.6)

Put another way, D(t, T ) = LB(t, T )J1 + B(t, T )J2 with

J1 = P∗{VT ≥ L | Ft}, J2 = EP∗(VT 11{VT <L} | Ft).

Solving SDE (5.1), for every t ∈ [0, T ] we obtain

VT = Vt exp
(
σ(W ∗

T −W ∗
t ) + (r̃ − 1

2σ2)(T − t)
)
. (5.7)

For J1, we have (recall that L > 0)

J1 = P∗
{

Vt exp
(
σ(W ∗

T −W ∗
t ) + (r̃ − 1

2σ2) (T − t)
) ≥ L

∣∣∣Ft

}

= P∗
{
−σ(W ∗

T −W ∗
t ) ≤ ln(Vt/L) + (r̃ − 1

2σ2) (T − t)
∣∣∣Ft

}

= P∗
{

ξ ≤ ln(x/L) + (r̃ − 1
2σ2)(T − t)

σ
√

T − t

}
x=Vt

= N
(
d2(Vt, T − t)

)
,
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since the random variable ξ := −(W ∗
T −W ∗

t )/
√

T − t is independent of the σ-field Ft, and has
the standard Gaussian law N(0, 1) under P∗.
To evaluate J2, it is convenient to introduce an auxiliary probability measure P̄ on (Ω,FT ) by
setting

dP̄
dP∗

= exp
(
σW ∗

T − 1
2σ2T

)
=: ηT , P∗-a.s.

It is well known that for every t ∈ [0, T ] we have

dP̄
dP∗

∣∣∣
Ft

= exp
(
σW ∗

t − 1
2σ2t

)
= ηt, P∗-a.s.

Let us denote A = {VT < L}. It is clear that

J2 = EP∗(VT 11A | Ft) = V0 er̃T EP∗(ηT 11A | Ft).

Consequently, using the abstract Bayes rule, we obtain

J2 = V0 er̃T ηt P̄{A | Ft} = B−1(t, T )Vte
−κ(T−t) P̄{A | Ft},

where the last equality is a consequence of the following chain of equalities:

V0 er̃T ηt = V0 exp
(
σW ∗

t − 1
2σ2t + (r − κ)T

)
= Vte

(r−κ)(T−t).

By virtue of Girsanov’s theorem, the process W̄t = W ∗
t −σt follows a standard Brownian motion

on the space (Ω,F, P̄). The dynamics of V under P̄ are

dVt = Vt

(
(r̃ + σ2) dt + σ dW̄t

)
,

and thus for every t ∈ [0, T ] we have

VT = Vt exp
(
σ(W̄T − W̄t) + (r̃ + 1

2σ2)(T − t)
)
.

Consequently,

P̄{A | Ft} = P̄
{

Vt exp
(
σ(W̄T − W̄t) + (r̃ + 1

2σ2)(T − t)
)

< L
∣∣∣Ft

}

= P̄
{

σ(W̄T − W̄t) < − ln(Vt/L)− (r̃ + 1
2σ2) (T − t)

∣∣∣Ft

}

= P̄
{

ξ̄ <
− ln(x/L)− (r̃ + 1

2σ2)(T − t)
σ
√

T − t

}
x=Vt

= N
(− d1(Vt, T − t)

)
,

since ξ̄ := (W̄T − W̄t)/
√

T − t is independent of the σ-field Ft, and has the standard Gaussian
law N(0, 1) under P̄. We conclude that

J2 = B−1(t, T )Vte
−κ(T−t)N

(− d1(Vt, T − t)
)
.

This completes the derivation of formula (5.4). 2

From the proof of Proposition 5.1, we deduce also that

D(t, T ) = LB(t, T )P∗{VT ≥ L | Ft}+ Vte
−κ(T−t) P̄{VT < L | Ft}.



46 Credit Risk Modelling

When κ = 0, it is not difficult to verify that P̄ is a martingale measure corresponding to the
choice of V as a discount factor. In other words, P̄ is equivalent to P∗ and the process Bt/Vt

follows a martingale under P̄. Notice that the conditional probabilities of default are:

p∗t = P∗{VT < L | Ft} = N
(− d2(Vt, T − t)

)
,

and
p̄t = P̄ {VT < L | Ft} = N

(− d1(Vt, T − t)
)
.

It is customary to refer to p∗t as the conditional risk-neutral probability of default. When κ = 0,
p̄t can also be seen as the ‘risk-neutral probability of default’ (associated with a different choice
of the discount factor, however). Merton’s valuation formula can be re-expressed as follows:

D(t, T ) = Lt(1− p∗t ) + Ltp
∗
t δ
∗
t = Lt(1− p∗t w

∗
t ),

where Lt = LB(t, T ) is the present value of the promised claim (as well as the present value
of the exposure at default), and δ∗t is the conditional risk-neutral expected recovery rate upon
default. Specifically,

δ∗t :=
EP∗{VT 11{VT <L} | Ft}

LP∗{VT < L | Ft} =
Vte

−κ(T−t)N
(− d1(Vt, T − t)

)

LB(t, T )N
(− d2(Vt, T − t)

) .

Recall also that w∗t = 1−δ∗t is called the conditional risk-neutral expected writedown rate upon
default. Let lt := Lt/Vt stand for the firm’s leverage ratio. In terms of the process lt, formula
(5.4) becomes

D(t, T )
Lt

= l−1
t e−κ(T−t)N

(− h1(lt, T − t)
)

+ N
(
h2(lt, T − t)

)
, (5.8)

where

h1,2(lt, T − t) =
− ln lt − κ(T − t)± 1

2σ2
V (T − t)

σV

√
T − t

. (5.9)

Notice that the quantity lt gives the ‘nominal’ value of the firm’s leverage ratio. Indeed, Lt

represents the default-free value of the firm’s debt, as opposed to the actual market value
D(t, T ) of the firm’s debt.

5.2 Hedging of a Corporate Bond

Since Merton’s formula can be seen as a variant of the Black-Scholes valuation result, the form
of the replicating (self-financing) trading strategy for a defaultable bond can be easily deduced
from the well-known expressions for the Black-Scholes hedging strategy for a European put
option. For the sake of completeness, we state the following corollary to Proposition 5.1, in
which we write D(t, T ) = u(Vt, t).

Corollary 5.1 The unique replicating strategy for a defaultable bond involves holding at any
time 0 ≤ t < T the φ1

t Vt units of cash invested in the firm’s value and φ2
t B(t, T ) units of cash

invested in default-free bonds, where

φ1
t = uV (Vt, t) = e−κ(T−t)N

(− d1(Vt, T − t)
)

and

φ2
t =

D(t, T )− φ1
t Vt

B(t, T )
= LN

(
d2(Vt, T − t)

)
.
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5.3 Credit Spreads

An important characteristic of a defaultable bond is the difference between its yield and the
yield of an equivalent default-free bond, i.e., the credit spread. Recall that the credit spread
S(t, T ) is defined through the formula S(t, T ) = Y d(t, T )− Y (t, T ), where Y d(t, T ) and Y (t, T )
are given by:

Y (t, T ) = − ln B(t, T )
T − t

, Y d(t, T ) = − ln D(t, T )
T − t

,

In Merton’s model the yield on a default-free bond is equal to the short-term interest rate; i.e.,
Y (t, T ) = r. Using (5.8) with L = 1, we arrive at the following representation for the credit
spread in Merton’s model

S(t, T ) = −
ln

(
l−1
t e−κ(T−t)N

(− h1(lt, T − t)
)

+ N
(
h2(lt, T − t)

))

T − t
.

Let us now analyze the behavior of the credit spread when time converges to the debt’s maturity.
For this purpose, observe that: limt→T lt = L/VT ,

lim
t→T

N
(− h1(lt, T − t)

)
=

{
1, on {VT < L},
0, on {VT > L},

and

lim
t→T

N
(
h2(lt, T − t)

)
=

{
0, on {VT < L},
1, on {VT > L}.

The reader can readily verify that

lim
t→T

S(t, T ) =
{

+∞, on {VT < L},
0, on {VT > L}. (5.10)

An essential feature of Merton’s model is that the default time τ appears to be a predictable
stopping time with respect to the filtration FV generated by the value process V, as it is
announced, for instance, by the following sequence of FV -stopping times:

τn = { t ≥ T − 1
n : Vt < L} (5.11)

with the usual convention that inf ∅ = ∞.
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6 Zhou’s (1996) Model

Zhou (1996) extends Merton’s approach by modelling the firm’s value process V as a geomet-
ric jump-diffusion process.2 The main purpose of Zhou’s study was to address the issue of
predictability of the default time τ, inherent in Merton’s model (the time of default remains
predictable within the so-called simplified version of Zhou’s model presented in this section,
though). To state Zhou’s equation for the dynamics of the value process V, we need to intro-
duce a Poisson process N with the intensity λ under the probability measure P∗ and a sequence
of independent identically distributed random variables (Ui)i≥1 with the finite expected value
ν = EP∗(Ui). We assume that the σ-fields generated by the processes W ∗, N and the sequence
(Ui)i≥1 are mutually independent under P∗. The equation for the dynamics of V under the
risk-neutral measure P∗ now takes the following form:

dVt = Vt−
(
(r − λν) dt + σV dW ∗

t + dπt

)
, (6.1)

where π is a jump process whose jump times are specified by the jump times of the Poisson
process N, and the size of the ith jump is Ui. In other words, the process π is a marked Poisson
process:

πt =
Nt∑

i=1

Ui, ∀ t ∈ [0, T ].

We endow our underlying probability space with the filtration F generated by processes W ∗

and π. It is not difficult to check that the compensated process π̃t = πt−λνt is a P∗-martingale
with respect to this filtration. Consequently, the process V ∗

t = e−rtVt, which is easily seen to
satisfy

dV ∗
t = V ∗

t−
(
σV dW ∗

t + dπ̃t

)
, (6.2)

also follows a martingale under P∗ with respect to F. Equation (6.2) can be solved explicitly,
yielding

V ∗
t = V ∗

0 exp
(
π̃t + σV W ∗

t − 1
2σ2

V t
) ∏

u≤t

(1 + ∆π̃u) exp(−∆π̃u),

where ∆π̃u = π̃u − π̃u− or, equivalently,

Vt = V0 exp
(
σV W ∗

t + (r − 1
2σ2

V − λν)t
) Nt∏

i=1

(1 + Ui). (6.3)

From now on, we assume, in addition, that Ui + 1 has the log-normal distribution under P∗ –
that is, ln(Ui + 1) ∼ N(µ, σ). This implies that

ν := EP∗(Ui) = exp
(
µ + 1

2σ2
)− 1.

2Mason and Bhattacharya (1981) use a pure jump process for the firm’s value.
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The case considered in Sect. 2 of Zhou (1996) corresponds to a defaultable claim with recovery
at maturity

X = L, A ≡ 0, X̃ = L(1− w̄(VT /L)), τ = T11{VT <L} +∞11{VT≥L},

where w̄ : R+ → R, referred to as the writedown function, determines the recovery value in
case of default. If we choose w̄(x) = 1− x, X̃ reduces to the recovery structure of the original
Merton model. In general, we have

Xd,1(T ) = L11{τ>T} + L(1− w̄(VT /L))11{τ≤T}

or, equivalently,
Xd,1(T ) = L

(
11{VT≥L} + δ̄(VT /L)11{VT <L}

)
,

where δ̄(VT /L) = 1−w̄(VT /L) is the recovery rate of the defaulted bond. The following auxiliary
result establishes the conditional probability law of the default event {τ = T} with respect to
the σ-field Ft.

Lemma 6.1 The risk-neutral conditional probability of default satisfies

P∗{τ = T | Ft} =
∞∑

i=0

e−λ(T−t)

(
λ(T − t)

)i

i!
N

(− d2,i(Vt, T − t)
)
,

where, for every i ∈ N and t ∈ R+,

d2,i

(
V, t

)
=

ln(V/L) + µi(t)
σi(t)

with
µi(t) = (r − 1

2σ2
V − λν)t + iµ, σ2

i (t) = σ2
V t + iσ2.

Proof. Obviously P∗{τ = T | Ft} = P∗{VT < L | Ft}. In view of the assumed independence of
the Brownian motion W ∗ and the jump component π, it is enough to consider the conditional
probability with respect to the number of jumps in the interval [t, T ] and to use the formula for
the total probability. In view of (6.3), on the set {NT −Nt = i} the random variable VT can be
represented as follows

VT = Vt exp
(
σV (W ∗

T −W ∗
t ) + (r − 1

2σ2
V − λν)(T − t) +

i∑

j=1

ζj

)
,

where ζj , j = 0, . . . , i, are independent identically distributed random variables with the Gaus-
sian law N(µ, σ). In addition, ζjs are independent of W ∗. Put another way, VT = Vt eζ , where
ζ is a Gaussian random variable, independent of Ft, with the expected value:

EP∗(ζ) = (r − 1
2σ2

V − λν)(T − t) + iµ,

and the variance:
VarP∗(ζ) = σ2

V (T − t) + iσ2.

The above representation for the random variable VT leads directly to the asserted formula.
The details are left to the reader. 2
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6.1 Defaultable bond

We define the price D(t, T ) of a defaultable bond by setting

D(t, T ) = Bt EP∗(B−1
T Xd,1(T ) | Ft). (6.4)

Due to the presence of the jump component in the dynamics of V , it is clear that an analytical
approach to the valuation of defaultable claims in Zhou’s framework requires solving an integro-
differential PDE involving the infinitesimal generator of V, and this does not seem to be an
easy matter. On the other hand, the valuation of a defaultable bond through the probabilistic
approach presents no difficulties. Of course, it still remains a problem of validity of formula
(6.4), because it is not supported in Zhou’s set-up by the existence of a replicating strategy for
a defaultable bond. Thus, in contrast to Merton’s valuation formula, expression (6.4) should be
seen as the formal definition of the price process of a defaultable bond.

Proposition 6.1 Assume that w̄(x) = 1− x. Then for any t ∈ [0, T ] we have

D(t, T ) = LB(t, T )
{

1−
∞∑

i=0

e−λ(T−t)

(
λ(T − t)

)i

i!
N

(− d2,i(Vt, T − t)
)

+
Vt

L

∞∑

i=0

eµi(T−t)+σ2
i (T−t)/2−λ(T−t)

(
λ(T − t)

)i

i!
N

(− d1,i(Vt, T − t)
)}

,

where, for every i ∈ N and t ∈ R+, we denote

µi(t) = (r − 1
2σ2

V − λν)t + iµ, σ2
i (t) = σ2

V t + iσ2,

and

d2,i

(
Vt, t

)
=

ln(Vt/L) + µi(t)
σi(t)

, d1,i(Vt, t) = d2,i(Vt, t) + σi(t).

Proof. It suffices to apply the valuation formula established in Merton (1973). It extends the
Black-Scholes formula to the case of a European put option written on a stock, whose price
follows a jump-diffusion process given by (6.1). For a more direct proof, notice that Xd,1(T )
equals:

Xd,1(T ) = L− L11{VT <L} + VT 11{VT <L},

so that
D(t, T ) = LB(t, T )− LP∗{VT < L | Ft}+ B(t, T )EP∗(VT 11{VT <L} | Ft).

The second term in the last formula can be found using Lemma 6.1. For the last term, it suffices
to first condition with respect to the number of jumps of N in the interval [t, T ]. On the set
{NT −Nt = i}, we obtain

EP∗(VT 11{VT <L} | Ft) = Vt EP∗(eζ11{xeζ<L}) |x=Vt
,

where ζ is an auxiliary Gaussian random variable that was introduced in the proof of Lemma
6.1. The valuation formula now follows directly from the elementary Lemma 6.2. 2

Lemma 6.2 Let ζ be a Gaussian random variable under P with the expected value m and the
variance σ2. Then for any strictly positive x we have

EP(eζ11{eζ<x}) = em+σ2/2N

(
ln x−m− σ2

σ

)
. (6.5)
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Proof. Equality (6.5) can be established by elementary integration. Alternatively, we can make
use of Girsanov’s theorem. It is clear that

I := EP(eζ11{eζ<x}) = EP(em+σW111{em+σW1<x})

= em+σ2/2 EP(eσW1−σ2/211{em+σW1<x}),

where W follows a standard Brownian motion on some filtered probability space (Ω,F,P). Let
P̃ be a probability measure, equivalent to P on (Ω,F1), with the following Radon-Nikodým
density:

dP̃
dP

= exp
(
σW1 − 1

2σ2
)
, P−a.s.

From Girsanov’s theorem, the process W̃t = Wt−σt follows a standard Brownian motion under
P̃, and thus

I = em+σ2/2 P̃{em+σW1 < x} = em+σ2/2 P̃{em+σW̃1+σ2
< x}

= em+σ2/2 P̃{σW̃1 < ln x−m− σ2}.

This immediately yields (6.5). 2

Observe that in the case of no jumps – that is, for λ = 0 – the formula established in Proposition
6.1 reduces to Merton’s result. It is noteworthy that the closed-form expressions for the value
of a defaultable bond can also be derived for other natural choices of the writedown function,
such as: w̄(x) = w0 − w1x, w̄(x) = min (1, w0 − w1x), etc.

Remarks. We have discussed only a special Merton-like case of Zhou’s approach. The general
model examined by Zhou (1996) belongs to the class of first-passage-time models that are
studied at some length in the next chapter. He postulates that the default time τ is the first
passage time of the firm’s value to a constant barrier. More specifically,

τ = inf { t ∈ [0, T ) : Vt ≤ v̄},

where v̄ > 0 is a positive constant. Furthermore, if default occurs prior to the bond’s maturity
T, the owner receives the payoff X̃ = L(1 − w̄(Vτ/L)) at time T ; equivalently, he gets the
amount Zτ = B(τ, T )X̃ at default time. An analytical result for the price of a defaultable bond
is not available in this set-up; Zhou (1996) provides a tractable way of valuing such a bond,
though.
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7 Properties of First Passage Times

We have already briefly discussed the risk-neutral valuation formulae for corporate bonds.
It should be stressed that several results in the existing literature rely on the probabilistic
approach. For instance, bond valuation formulae in Longstaff and Schwartz (1995) and Saá-
Requejo and Santa-Clara (1999) correspond to the following generic expression

D(t, T ) = B(t, T )PT {τ > T | Ft}+ δB(t, T )PT {τ ≤ T | Ft}
in which the default time is defined as the first passage time of the value process to a (constant
or variable) barrier, and PT is the forward martingale probability measure. Direct computations
based on the above formula require, of course, the knowledge of conditional distribution of the
default time τ with respect to the σ-field Ft. In this lecture, we provide a few classic results
related to this issue.
Let us first consider two one-dimensional Itô processes X1 and X2 with respective dynamics
under the probability measure P∗ given by

dXi
t = Xi

t

(
µi(t) dt + σi(t) dW i

t

)
, Xi

0 = xi > 0, (7.1)

for i = 1, 2, where W i, i = 1, 2 are mutually independent d-dimensional standard Brownian
motions with respect to the underlying filtration F, and µi : R+ → R, σi : R+ → Rd are such
that the SDEs (7.1) possess unique, strong, global solutions. Let us also assume that x1 > x2.
Frequently, the default time τ is modeled as τ = inf { t ≥ 0 : X1

t ≤ X2
t }. It is convenient

to introduce the log-ratio process Yt := ln (X1
t /X2

t ), so that τ = inf { t ≥ 0 : Yt ≤ 0}. The
dynamics of Y are described in the next lemma. Since the proof of Lemma 7.1 relies on a
straightforward application of Itô’s formula, it is omitted.

Lemma 7.1 The process Y satisfies

dYt = ν(t) dt + σ1(t) dW 1
t − σ2(t) dW 2

t (7.2)

with
ν(t) = µ1(t)− µ2(t) + 1

2 |σ2(t)|2 − 1
2 |σ1(t)|2, (7.3)

where | · | stands for the Euclidean norm in Rd.

Suppose now that the coefficients µi and σi, i = 1, 2 are constant vectors in Rd. In this case, the
process Y follows a Brownian motion with the standard deviation σ and the drift ν, specifically:
dYt = ν dt + σ dW ∗

t , Y0 = y0, where

ν = µ1 − µ2 + 1
2 |σ2|2 − 1

2 |σ1|2, σ2 = |σ1|2 + |σ2|2,
and W ∗ is a standard (one-dimensional) Brownian motion under P∗ with respect to F. Put
another way:

Yt = y0 + σW ∗
t + νt, ∀ t ∈ R+, (7.4)

for some constants ν ∈ R and σ > 0. Let us notice that Y inherits from W ∗ a strong Markov
property with respect to F.
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7.1 Probability Law of the First Passage Time

Let τ stand for the first passage time to zero by the process Y, that is, τ := inf { t ≥ 0 : Yt = 0}.
It is well known that in an arbitrarily small time interval [0, t] the sample path of the Brownian
motion started at 0 passes through origin infinitely many times (see, for instance, Page 42 in
Krylov (1995)). Using Girsanov’s theorem and the strong Markov property of the Brownian
motion, it is thus easy to deduce that first passage time by Y to zero coincides with the first
crossing time by Y of the level 0, that is, with probability 1:

τ = inf { t ≥ 0 : Yt < 0} = inf { t ≥ 0 : Yt ≤ 0}.

The following result is standard.

Lemma 7.2 Let σ > 0 and ν ∈ R. Then for every x > 0 we have

P∗
{

sup
0≤u≤s

(σW ∗
u + νu) ≤ x

}
= N

(
x− νs

σ
√

s

)
− e2νσ−2xN

(−x− νs

σ
√

s

)
(7.5)

and for every x < 0

P∗
{

inf
0≤u≤s

(σW ∗
u + νu) ≥ x

}
= N

(−x + νs

σ
√

s

)
− e2νσ−2xN

(
x + νs

σ
√

s

)
. (7.6)

Proof. To derive the first equality, we shall employ Girsanov’s theorem and the reflection prin-
ciple for a Brownian motion. Assume first that σ = 1. Let P be the probability measure on
(Ω,Fs) given by

dP
dP∗

= e−νW∗
s − ν2

2 s, P∗-a.s.,

so that the process Wt := Xt = W ∗
t + νt, t ∈ [0, s], follows a standard Brownian motion under

P, and
dP∗

dP
= eνWs− ν2

2 s, P-a.s.

Moreover

P∗{ sup
0≤u≤s

(W ∗
u + νu) > x, W ∗

s + νs ≤ x} = EP
(
eνWs− ν2

2 s 11{ sup 0≤u≤s Wu>x, Ws≤x}
)
.

Let us set τx = inf { t ≥ 0 : Wt = x}, and let us introduce an auxiliary process W̃t, t ∈ [0, s], by
setting:

W̃t = Wt11{τx≥t} + (2x−Wt)11{τx<t}.

By virtue of the reflection principle, the process W̃ is a standard Brownian motion under P.
Moreover, we have

{ sup
0≤u≤s

W̃u > x, W̃s ≤ x} = {Ws ≥ x} ⊂ {τx ≤ s}.

We obtain

P∗
{

sup
0≤u≤s

(W ∗
u + νu) ≤ x

}
= P∗{W ∗

s + νs ≤ x} − P∗{ sup
0≤u≤s

(W ∗
u + νu) > x, W ∗

s + νs ≤ x
}
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= P∗{W ∗
s + νs ≤ x} − EP

(
eνWs− ν2

2 s 11{ sup 0≤u≤s Wu>x, Ws≤x}
)

= P∗{W ∗
s + νs ≤ x} − EP

(
eνW̃s− ν2

2 s 11{ sup 0≤u≤s W̃u>x, W̃s≤x}
)

= P∗{W ∗
s + νs ≤ x} − EP

(
eν(2x−Ws)− ν2

2 s 11{Ws≥x}
)

= P∗{W ∗
s + νs ≤ x} − e2νx EP

(
eνWs− ν2

2 s 11{Ws≤−x}
)

= P∗{W ∗
s + νs ≤ x} − e2νx P∗{W ∗

s + νs ≤ −x}
= N

(
x− νs√

s

)
− e2νxN

(−x− νs√
s

)
.

This ends the proof of the first equality for σ = 1. For any σ > 0 we have

P∗
{

sup
0≤u≤s

(σW ∗
u + νu) ≤ x

}
= P∗

{
sup

0≤u≤s
(W ∗

u + νσ−1u) ≤ xσ−1
}
,

and this implies (7.5). Since −W ∗ follows a standard Brownian motion under P∗, for any x < 0
we have

P∗
{

inf
0≤u≤s

(σW ∗
u + νu) ≥ x

}
= P∗

{
sup

0≤u≤s
(σW ∗

u − νu) ≤ −x
}
,

and thus the second equality is a simple consequence of the first. 2

Proposition 7.1 Let Y be given by (7.4), where ν ∈ R, σ > 0, and W ∗ is a standard Brownian
motion under P∗. Then the random variable τ has an inverse Gaussian probability distribution
under P∗. More specifically, for any 0 < s < ∞,

P∗{τ ≤ s} = P∗{τ < s} = N(h1(s)) + e−2νσ−2y0N(h2(s)), (7.7)

where N is the standard Gaussian cumulative distribution function, and

h1(s) =
−y0 − νs

σ
√

s
, h2(s) =

−y0 + νs

σ
√

s
.

Proof. Notice first that

P∗{τ ≥ s} = P∗{ inf
0≤u≤s

Yu ≥ 0} = P∗{ inf
0≤u≤s

Xu ≥ −y0}, (7.8)

where Xu = σW ∗
u + νu. We know from Lemma 7.2 that for every x < 0 we have

P∗{ inf
0≤u≤s

Xu ≥ x} = N

(−x + νs

σ
√

s

)
− e2νσ−2xN

(
x + νs

σ
√

s

)
.

When combined with (7.8), this yields (7.7). 2

The following corollary is a consequence of Proposition 7.1 and the strong Markov property of
the process Y with respect to the filtration F.

Corollary 7.1 Under the assumptions of Proposition 7.1 for any t < s we have, on the set
{τ > t},

P∗{τ ≤ s | Ft} = N

(−Yt − ν(s− t)
σ
√

s− t

)
+ e−2νσ−2YtN

(−Yt + ν(s− t)
σ
√

s− t

)
.
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We are in a position to apply the foregoing results to specific examples of default times. In the
first example, we examine the case of a constant lower threshold.

Example 7.1 Suppose that the short-term interest rate process is constant, i.e., rt = r, t ≥ 0.
In addition, let the value process V follow:

dVt = Vt

(
(r − κ) dt + σV dW ∗

t

)
(7.9)

with constant coefficients κ and σV > 0. Let us also assume that the barrier process v is
constant and equal to v̄, where the constant v̄ satisfies v̄ < V0. We set

τ = inf { t ≥ 0 : Vt ≤ v̄} = inf { t ≥ 0 : Vt < v̄}.
Now, letting X1

t = Vt and X2
t = v̄, so that Yt = ln(Vt/v̄), and identifying the terms in (7.1),

we obtain
µ1 ≡ r − κ, σ1 ≡ σV , x1 = V0

and
µ2 ≡ 0, σ2 ≡ 0, x2 = v̄.

Consequently, ν = r − κ − 1
2σ2

V and σ = σV in (7.4). Applying Corollary 7.1, we obtain for
every s > t, on the set {τ > t},

P∗{τ ≤ s | Ft} = N

(
ln v̄

Vt
− ν(s− t)

σV

√
s− t

)
+

( v̄

Vt

)2a

N

(
ln v̄

Vt
+ ν(s− t)

σV

√
s− t

)
,

where

a =
ν

σ2
V

=
r − κ− 1

2σ2
V

σ2
V

. (7.10)

The last result was used in Leland and Toft (1996).

Example 7.2 Assume that the value process V and the short-term interest rate r are as in
Example 7.1. For a fixed γ, let the barrier function be defined as v̄(t) = Ke−γ(T−t) for t ∈ R+,
so that v̄(t) satisfies

dv̄(t) = γv̄(t) dt, v̄(0) = Ke−γT .

Letting X1
t = Vt, X2

t = v̄(t) and identifying the terms in (7.1), we obtain

µ1 ≡ r − κ, σ1 ≡ σV , x1 = v̄(0)

and
µ2 ≡ γ, σ2 ≡ 0, x2 = Ke−γT ,

so that the drift and diffusion coefficients in (7.4) are ν̃ ≡ r − κ − γ − 1
2σ2

V and σ ≡ σV . We
define the stopping time τ as τ = inf { t ≥ 0 : Vt ≤ v̄(t)}. From Corollary 7.1, we obtain for
every t < s, on the set {τ > t},

P∗{τ ≤ s | Ft} = N

(
ln v̄(t)

Vt
− ν̃(s− t)

σV

√
s− t

)
+

(
v̄(t)
Vt

)2ã

N

(
ln v̄(t)

Vt
+ ν̃(s− t)

σV

√
s− t

)
,

where

ã =
ν̃

σ2
V

=
r − κ− γ − 1

2σ2
V

σ2
V

. (7.11)

The last formula was used in Black and Cox (1976).
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7.2 Joint Probability Law of Y and τ

We shall now establish the joint law of Y and τ. To be more specific, we shall find, for every
y ≥ 0,

I := P∗{Ys ≥ y, τ ≥ s | Ft} = P∗{Ys ≥ y, τ > s | Ft},
where τ = inf { t ≥ 0 : Yt ≤ 0} = inf { t ≥ 0 : Yt < 0}. Given a one-dimensional standard
Brownian motion W ∗ under P∗, and let us denote by MW∗

s and mW∗
s the running maximum

and minimum, respectively. More explicitly, MW∗
s = sup0≤u≤s W ∗

u and mW∗
s = inf0≤u≤s W ∗

u .
It is well known that for every s > 0 we have

P∗{MW∗
s > 0} = 1, P∗{mW∗

s < 0} = 1. (7.12)

The following well-known result, commonly referred to as the reflection principle, is a straight-
forward consequence of the strong Markov property of the Brownian motion.

Lemma 7.3 The following equality:

P∗{W ∗
s ≤ x, MW∗

s ≥ y} = P∗{W ∗
s ≥ 2y − x} = P∗{W ∗

s ≤ x− 2y}

is valid for every s > 0, y ≥ 0 and x ≤ y.

We need to examine the case of a slightly more general process – namely, a Brownian motion
with non-zero drift. Consider the process X that equals Xt = νt + σW ∗

t. We write MX
s =

sup0≤u≤s Xu and mX
s = inf0≤u≤s Xu. By virtue of Girsanov’s theorem, the process X is a

Brownian motion (up to an appropriate rescaling) under an equivalent probability measure and
thus (cf. (7.12))

P∗{MX
s > 0} = 1, P∗{mX

s < 0} = 1,

for every s > 0.

Lemma 7.4 For every s > 0, the joint distribution of Xs and MX
s is given by the formula

P∗{Xs ≤ x, MX
s ≥ y} = e2νyσ−2

P∗{Xs ≥ 2y − x + 2νs}, (7.13)

for every x, y ∈ R such that y ≥ 0 and x ≤ y.

Proof. Since

I := P∗{Xs ≤ x, MX
s ≥ y} = P∗{Xσ

s ≤ xσ−1, MXσ

s ≥ yσ−1},

where Xσ
t = W ∗

t + νtσ−1, it is clear that we may assume, without loss of generality, that
σ = 1. It is convenient to employ the technique of an equivalent change of probability measure.
It follows from Girsanov’s theorem that X is a standard Brownian motion under the probability
measure P, which is given on (Ω,Fs) by setting (recall that σ = 1)

dP
dP∗

= e−νW∗
s− ν2

2 s, P∗-a.s.

Notice also that
dP∗

dP
= eνWs− ν2

2 s, P-a.s.,
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where Wt := Xt = W ∗
t + νt, t ∈ [0, s], follows a standard Brownian motion under P, and

I = EP
(
eνWs− ν2

2 s 11{Xs≤x, MX
s ≥y}

)
= EP

(
eνWs− ν2

2 s 11{Ws≤x, MW
s ≥y}

)
.

Since W is a standard Brownian motion under P, an application of the reflection principle (7.3)
gives

I = EP
(
eν(2y−Ws)− ν2

2 s 11{2y−Ws≤x, MW
s ≥y}

)

= EP
(
eν(2y−Ws)− ν2

2 s 11{Ws≥2y−x}
)

= e2νy EP
(
e−νWs− ν2

2 s 11{Ws≥2y−x}
)
,

since clearly 2y− x ≥ y. Let us define still another equivalent probability measure P̃ by setting

dP̃
dP

= e−νWs− ν2
2 s, P-a.s.

Is is clear that

I = e2νy EP
(
e−νWs− ν2

2 s 11{Ws≥2y−x}
)

= e2νy P̃{Ws ≥ 2y − x}.

Furthermore, the process W̃t = Wt + νt, t ∈ [0, s], follows a standard Brownian motion under
P̃ and we have:

I = e2νy P̃{W̃s + νs ≥ 2y − x + 2νs}.
The last equality easily yields (7.13). 2

It is worthwhile to observe that (a similar remark applies to all formulae below)

P∗{Xs ≤ x, MX
s ≥ y} = P{Xs < x, MX

s > y}.
The following result is a straightforward consequence of Lemma 7.4.

Proposition 7.2 For every x, y ∈ R which satisfy y ≥ 0 and x ≤ y, we have

P∗{Xs ≤ x, MX
s ≥ y} = e2νyσ−2

N

(
x− 2y − νs

σ
√

s

)
. (7.14)

Hence,

P∗{Xs ≤ x, MX
s ≤ y} = N

(
x− νs

σ
√

s

)
− e2νyσ−2

N

(
x− 2y − νs

σ
√

s

)
(7.15)

for every x, y ∈ R such that x ≤ y and y ≥ 0.

Proof. For the first equality, note that

P∗{Xs ≥ 2y − x + 2νs} = P∗{−σW ∗
s ≤ x− 2y − νs} = N

(
x− 2y − νs

σ
√

s

)
,

since −σW ∗
t has Gaussian law with zero mean and variance σ2t. For (7.15), it is enough to

observe that
P∗{Xs ≤ x, MX

s ≤ y}+ P{Xs ≤ x, MX
s ≥ y} = P{Xs ≤ x}
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and to apply (7.14). This completes the proof. 2

It is clear that
P∗{MX

s ≥ y} = P∗{Xs ≥ y}+ P∗{Xs ≤ y, MX
s ≥ y}

for every y ≥ 0, and thus

P∗{MX
s ≥ y} = P∗{Xs ≥ y}+ e2νyσ−2

P∗{Xs ≥ y + 2νs}. (7.16)

Consequently,

P∗{MX
s ≤ y} = 1− P∗{MX

s ≥ y} = P∗{Xs ≤ y} − e2νyσ−2
P∗{Xs ≥ y + 2νs}.

This leads to the following corollary.

Corollary 7.2 The following formula holds for every y ≥ 0

P∗{MX
s ≤ y} = N

(
y − νs

σ
√

s

)
− e2νyσ−2

N

(−y − νs

σ
√

s

)
. (7.17)

Let us now focus on the law of the minimal value of X. Observe that for any y ≤ 0, we have

P∗{ sup
0≤u≤s

(σW ∗
u − νu) ≥ −y} = P∗{ inf

0≤u≤s
(−σW ∗

u + νu) ≤ y} = P∗{ inf
0≤u≤s

Xu ≤ y},

where the last equality follows from the symmetry of the Brownian motion. Consequently, for
every y ≤ 0 we have P∗{mX

s ≤ y} = P{M X̃
s ≥ −y}, where the process X̃ equals X̃t = σW ∗

t −νt.
The following result is thus not difficult to prove.

Proposition 7.3 For every s > 0, the joint distribution of (Xs,m
X
s ) satisfies

P∗{Xs ≥ x, mX
s ≥ y} = N

(−x + νs

σ
√

s

)
− e2νyσ−2

N

(
2y − x + νs

σ
√

s

)

for every x, y ∈ R such that y ≤ 0 and y ≤ x.

Corollary 7.3 The following formula is valid for every y ≤ 0

P∗{mX
s ≥ y} = N

(−y + νs

σ
√

s

)
− e2νyσ−2

N

(
y + νs

σ
√

s

)
.

Recall that we denote Yt = y0 + Xt, where Xt = νt + σW ∗
t . We write

mX
s = inf

0≤u≤s
Xu, mY

s = inf
0≤u≤s

Yu.

Corollary 7.4 For any s > 0 and y ≥ 0 we have

P∗{Ys ≥ y, τ ≥ s} = N

(−y + y0 + νs

σ
√

s

)
− e−2νσ−2y0 N

(−y − y0 + νs

σ
√

s

)
.
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Proof. Since

P∗{Ys ≥ y, τ ≥ s} = P∗{Ys ≥ y, mY
s ≥ 0} = P∗{Xs ≥ y − y0, mX

s ≥ −y0},

the formula is obvious. 2

More generally, the Markov property of Y justifies the following result.

Lemma 7.5 Under the assumptions of Proposition 7.1, for any t < s and y ≥ 0 we have, on
the set {τ > t},

P∗{Ys ≥ y, τ ≥ s | Ft} = N

(−y + Yt + ν(s− t)
σ
√

s− t

)
− e−2νσ−2YtN

(−y − Yt + ν(s− t)
σ
√

s− t

)
.

Example 7.3 Assume, as before, that the dynamics of V are

dVt = Vt

(
(r − κ) dt + σV dW ∗

t

)
(7.18)

and τ = inf { t ≥ 0 : Vt ≤ v̄} = inf { t ≥ 0 : Vt < v̄}, where the constant v̄ satisfies v̄ < V0. By
applying Lemma 7.5 to Yt = ln(Vt/v̄) and y = ln(x/v̄), we obtain the following result, which is
valid for x ≥ v̄, on the set {τ > t},

P∗{Vs ≥ x, τ ≥ s | Ft} = N

(
ln(Vt/x) + ν(s− t)

σ
√

s− t

)

−
(

v̄

Vt

)2a

N

(
ln v̄2 − ln(xVt) + ν(s− t)

σ
√

s− t

)
,

where ν = r − κ− 1
2σ2

V and a = νσ−2
V .

Example 7.4 Assume that V satisfies (7.18) and that the barrier function equals v̄(t) =
Ke−γ(T−t) for some positive constant K. Using again Lemma 7.5, but this time with Yt =
ln(Vt/v̄(t)) and y = ln(x/v̄(s)), we find that for every t < s ≤ T and x ≥ v̄(s) we have, on the
set {τ > t},

P∗{Vs ≥ x, τ ≥ s | Ft} = N

(
ln(Vt/v̄(t))− ln(x/v̄(s)) + ν̃(s− t)

σV

√
s− t

)

−
(

v̄(t)
Vt

)2ã

N

(− ln(Vt/v̄(t))− ln(x/v̄(s)) + ν̃(s− t)
σV

√
s− t

)
,

where ν̃ = r − κ− γ − 1
2σ2

V and ã = ν̃σ−2
V . Upon simplification, this yields

P∗{Vs ≥ x, τ ≥ s | Ft} = N

(
ln(Vt/x) + ν(s− t)

σV

√
s− t

)
−

(
v̄(t)
Vt

)2ã

N

(
ln v̄2(t)− ln(xVt) + ν(s− t)

σV

√
s− t

)
,

where ν = r − κ− 1
2σ2

V . In particular, by setting t = 0 and s = T, we obtain for x ≥ v̄(T )

P∗{VT ≥ x, τ ≥ T} = N

(
ln(V0/x) + νT

σV

√
T

)
−

(
v̄(0)
V0

)2ã

N

(
ln v̄2(0)− ln(xV0) + νT

σV

√
T

)
.
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Remarks. Notice that if we take x = v̄(s) = Ke−γ(T−s), then clearly

1− P∗{Vs ≥ v̄(s), τ ≥ s | Ft} = P∗{τ < s | Ft} = P∗{τ ≤ s | Ft}.

On the other hand, we have

1−N

(
ln(Vt/v̄(s)) + ν(s− t)

σV

√
s− t

)
= N

(
ln(v̄(t)/Vt)− ν̃(s− t)

σV

√
s− t

)

and

N

(
ln v̄2(t)− ln(v̄(s)Vt) + ν(s− t)

σV

√
s− t

)
= N

(
ln(v̄(t)/Vt) + ν̃(s− t)

σV

√
s− t

)
.

Notice that by setting x = v̄(s) we rediscover the formula previously established in Example
7.2.
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Credit Risk Modelling: Lecture 8

8 Black and Cox (1976) Model

The original Merton model does not allow for a premature default, in the sense that the default
may only occur at the maturity of the claim. Several authors put forward structural-type models
in which this restrictive and unrealistic feature is relaxed. In most of these models, the time of
default is given as the first passage time of the value process V to a deterministic or random
barrier. The default may thus occur at any time before or on the bond’s maturity date T. The
challenge here is to appropriately specify the lower threshold v, the recovery process Z, and to
compute the corresponding functional that appears on the right-hand side of the risk-neutral
valuation formula:

Xd(t, T ) := Bt EP∗
( ∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
.

As one might easily guess, this is a non-trivial problem, in general. In addition, the practical
problem of the lack of direct observations of the value process V largely limits the applicability
of the first-passage-time models. The aim of this lecture is to present the first-passage-time
structural model put forward by Black and Cox (1976). As a rule, the default time is denoted
by τ ; the symbols τ̄ , τ̂ and τ̃ being reserved to some auxiliary random times.

8.1 Corporate Zero-Coupon Bond

Black and Cox (1976) extend Merton’s (1974) research in several directions. In particular, they
make account for specific features of debt contracts as: safety covenants, debt subordination,
and restrictions on the sale of assets. They assume that the firm’s stockholders (or bondholders)
receive a continuous dividend payment, proportional to the current value of the firm. Specifically,
they postulate that

dVt = Vt

(
(r − κ) dt + σV dW ∗

t

)
, (8.1)

where the constant κ ≥ 0 represents the payout ratio, and σV > 0 is the constant volatility
coefficient. The short-term interest rate is assumed to be non-random, specifically, rt = r, where
r is a constant. This means that the interest rate risk is disregarded in the original Black and
Cox (1976) model.

8.1.1 Safety covenants

Let us first focus on the safety covenants in the firm’s indenture provisions. Generally speaking,
safety covenants provide the firm’s bondholders with the right to force the firm to bankruptcy
or reorganization if the firm is doing poorly according to a set standard. The standard for a
poor performance is set in Black and Cox (1976) in terms of a time-dependent deterministic
barrier v̄(t) = Ke−γ(T−t), t ∈ [0, T ), for some constant K > 0. They postulate that as soon
as the value of firm’s assets crosses this lower threshold, the bondholders take over the firm.
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Otherwise, default takes place at debt’s maturity or not depending on whether VT < L or not.
Let us set:

vt =
{

v̄(t), for t < T,
L, for t = T .

(8.2)

The default event occurs at the first time t ∈ [0, T ] at which the firm’s value Vt falls below the
level vt, or the default event does not occur at all. The default time τ thus equals (as usual,
inf ∅ = +∞):

τ = inf { t ∈ [0, T ] : Vt < vt}.
The recovery process Z and the recovery payoff X̃ are proportional to the value process, specif-
ically, Z ≡ β2V and X̃ = β1VT for some constants β1, β2 ∈ [0, 1]. The classic case examined by
Black and Cox (1976) corresponds to β1 = β2 = 1. To summarize, we consider the following
model:

X = L, A ≡ 0, Z ≡ β2V, X̃ = β1VT , τ = τ̄ ∧ τ̂ ,

where the early default time τ̄ equals

τ̄ = inf { t ∈ [0, T ) : Vt < v̄(t)},
and τ̂ stands for Merton’s default time: τ̂ = T11{VT <L} +∞11{VT≥L}.

Remarks. Assume that V0 > v̄(0). It is important to notice that since the process V satisfies
(8.1) and v̄ is a smooth function, τ̄ is also the first passage time of the value process V to the
deterministic barrier v̄, specifically,

τ̄ = inf { t ∈ [0, T ) : Vt ≤ v̄(t)} = inf { t ∈ [0, T ) : Vt = v̄(t)}.
The choice of a strict or large inequality in the definition of the early default time τ̄ is thus
a matter of convention. The same observation applies to other examples of first-passage-time
structural models considered in the sequel.

In addition, we postulate that v̄(t) ≤ LB(t, T ) or, more explicitly,

Ke−γ(T−t) ≤ Le−r(T−t), ∀ t ∈ [0, T ], (8.3)

so that, in particular, K ≤ L. Condition (8.3) ensures that the payoff to the bondholder at the
default time τ never exceeds the face value of debt, discounted at a risk-free rate. Since the
interest rate r is assumed to be constant, the pricing function u = u(V, t) of a defaultable bond
solves the following PDE:

ut(V, t) + (r − κ)V uV (V, t) + 1
2σ2

V V 2uV V (V, t)− ru(V, t) = 0

with the boundary condition u(Ke−γ(T−t), t) = β2Ke−γ(T−t) and the terminal condition
u(V, T ) = min (β1V, L). To find an explicit solution to this problem, we prefer to rely on
a probabilistic approach, though. To this end, we notice that for any t < T the price
D(t, T ) = u(Vt, t) of a defaultable bond admits the following probabilistic representation, on
the set {τ > t} = {τ̄ > t}

D(t, T ) = EP∗
(
Le−r(T−t)11{τ̄≥T, VT ≥L}

∣∣∣Ft

)

+ EP∗
(
β1VT e−r(T−t)11{τ̄≥T, VT <L}

∣∣∣Ft

)

+ EP∗
(
Kβ2e

−γ(T−τ̄)e−r(τ̄−t)11{t<τ̄<T}
∣∣∣Ft

)
.
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After default – that is, on the set {τ ≤ t} = {τ̄ ≤ t}, we clearly have

D(t, T ) = β2v̄(τ)B−1(τ, T )B(t, T ) = Kβ2e
−γ(T−τ)er(t−τ).

The first two conditional expectations in the valuation formula for defaultable bond can be com-
puted by using the formula for the conditional probability P∗{Vs ≥ x, τ ≥ s | Ft}, established
in Example 1.4 of Lecture 4. To evaluate the third conditional expectation, we shall employ the
conditional probability law of the first passage time of the process V to the barrier v̄(t) – this
law was already found in Example 1.2 of Lecture 4. We are thus in a position to establish the
following valuation result, due to Black and Cox (1976). Recall that we denote:

ν = r − κ− 1
2σ2

V , ν̃ = ν − γ = r − κ− γ − 1
2σ2

V ,

and ã = ν̃σ−2
V . For the sake of brevity, in the statement and the proof of Proposition 8.1 we

shall write σ instead of σV .

Proposition 8.1 Assume that ν̃2 + 2σ2(r − γ) > 0. Then the price process D(t, T ) = u(Vt, t)
of a defaultable bond equals, on the set {τ > t},

D(t, T ) = LB(t, T )
(
N

(
h1(Vt, T − t)

)−R2ã
t N

(
h2(Vt, T − t)

))

+ β1Vte
−κ(T−t)

(
N

(
h3(Vt, T − t))−N

(
h4(Vt, T − t)

))

+ β1Vte
−κ(T−t)R2ã+2

t

(
N

(
h5(Vt, T − t))−N

(
h6(Vt, T − t)

))

+ β2Vt

(
Rθ+ζ

t N
(
h7(Vt, T − t)

)
+ Rθ−ζ

t N
(
h8(Vt, T − t)

))
,

where Rt = v̄(t)/Vt,

θ = ã + 1, ζ = σ−2
√

ν̃2 + 2σ2(r − γ)

and

h1(Vt, T − t) =
ln (Vt/L) + ν(T − t)

σ
√

T − t
,

h2(Vt, T − t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
,

h3(Vt, T − t) =
ln (L/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,

h4(Vt, T − t) =
ln (K/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,

h5(Vt, T − t) =
ln v̄2(t)− ln(LVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h6(Vt, T − t) =
ln v̄2(t)− ln(KVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h7(Vt, T − t) =
ln (v̄(t)/Vt) + ζσ2(T − t)

σ
√

T − t
,

h8(Vt, T − t) =
ln (v̄(t)/Vt)− ζσ2(T − t)

σ
√

T − t
.

Before proceeding to the proof of Proposition 8.1, we state an elementary lemma.
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Lemma 8.1 For any a ∈ R and b > 0 we have, for every y > 0,

∫ y

0

x dN

(
ln x + a

b

)
= e

1
2 b2−a N

(
ln y + a− b2

b

)
(8.4)

and ∫ y

0

x dN

(− ln x + a

b

)
= e

1
2 b2+a N

(− ln y + a + b2

b

)
. (8.5)

Let a, b, c ∈ R satisfy b < 0 and c2 > 2a. Then for every y > 0
∫ y

0

eax dN

(
b− cx√

x

)
=

d + c

2d
g(y) +

d− c

2d
h(y), (8.6)

where d =
√

c2 − 2a and

g(y) = eb(c−d) N

(
b− dy√

y

)
, h(y) = eb(c+d) N

(
b + dy√

y

)
.

Proof. The proof of (8.4)–(8.5) is standard. For (8.6), observe that

f(y) :=
∫ y

0

eax dN

(
b− cx√

x

)
=

∫ y

0

eax n

(
b− cx√

x

)(
− b

2x3/2
− c

2
√

x

)
dx,

where n is the probability density function of the standard Gaussian law. On the other hand,

g′(x) = eb(c−√c2−2a) n

(
b−√c2 − 2ax√

x

)(
− b

2x3/2
−
√

c2 − 2a

2
√

x

)

= eax n

(
b− cx√

x

)(
− b

2x3/2
− d

2
√

x

)

and

h′(x) = eb(c+
√

c2−2a) n

(
b +

√
c2 − 2ax√

x

)(
− b

2x3/2
+
√

c2 − 2a

2
√

x

)

= eax n

(
b− cx√

x

)(
− b

2x3/2
+

d

2
√

x

)
.

Consequently,

g′(x) + h′(x) = −eax b

x3/2
n

(
b− cx√

x

)

and

g′(x)− h′(x) = −eax d

x1/2
n

(
b− cx√

x

)
.

Thus, f can be represented as follows:

f(y) =
1
2

∫ y

0

(
g′(x) + h′(x) +

c

d
(g′(x)− h′(x))

)
dx.
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Since limy→0+ g(y) = limy→0+ h(y) = 0, we conclude that for every y > 0 we have

f(y) =
1
2
(g(y) + h(y)) +

c

2d
(g(y)− h(y)).

This end the proof of the lemma. 2

Proof of Proposition 8.1. Since the proof relies on calculations that are rather standard, though
lengthy, we shall merely sketch the proof. We need to find the following conditional expectations:

D1(t, T ) = LB(t, T )P∗{VT ≥ L, τ̄ ≥ T | Ft},
D2(t, T ) = β1B(t, T )EP∗

(
VT 11{VT <L, τ̄≥T}

∣∣Ft

)
,

D3(t, T ) = Kβ2Bte
−γT EP∗

(
e(γ−r)τ̄11{t<τ̄<T}

∣∣Ft

)
.

For the sake of notational convenience, we set t = 0. Let us first evaluate D1(0, T ) – that is,
the part of the bond’s value corresponding to no-default event. From Example 1.4 of Lecture 4,
we know that if L ≥ v̄(T ) = K then

P∗{VT ≥ L, τ̄ ≥ T} = N

(
ln V0

L + νT

σ
√

T

)
−R2ã

0 N


 ln v̄2(0)

LV0
+ νT

σ
√

T




with R0 = v̄(0)/V0. It is thus clear that

D1(0, T ) = LB(0, T )
(
N

(
h1(V0, T )

)−R2ã
0 N

(
h2(V0, T )

))
.

Let us now examine D2(0, T ) – that is, the part of the bond’s value associated with default at
time T. It is clear that

D2(0, T )
β1B(0, T )

= EP∗
(
VT 11{VT <L, τ̄≥T}

)
=

∫ L

K

x dP∗{VT < x, τ̄ ≥ T}.

Using again Example 1.4 of Lecture 4 and the fact that P∗{τ̄ ≥ T} does not depend on x, we
get, for every x ≥ K,

dP∗{VT < x, τ̄ ≥ T} = dN

( ln x
V0
− νT

σ
√

T

)
+ R2ã

0 dN


 ln v̄2(0)

xV0
+ νT

σ
√

T


 .

Let us denote

K1(0) =
∫ L

K

x dN

(
ln x− ln V0 − νT

σ
√

T

)

and

K2(0) =
∫ L

K

x dN

(
2 ln v̄(0)− ln x− ln V0 + νT

σ
√

T

)
.

Using (8.4)–(8.5), we obtain

K1(0) = V0e
(r−κ)T

(
N

(
ln L

V0
− ν̂T

σ
√

T

)
−N

(
ln K

V0
− ν̂T

σ
√

T

))
,
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where ν̂ = ν + σ2 = r − κ + 1
2σ2, and

K2(0) = V0R
2
0e

(r−κ)T


N


 ln v̄2(0)

LV0
+ ν̂T

σ
√

T


−N


 ln v̄2(0)

KV0
+ ν̂T

σ
√

T





 .

Since
D2(0, T ) = β1B(0, T )

(
K1(0) + Rã

0K2(0)
)
,

we conclude that

D2(0, T ) = β1V0e
−κT

(
N

(
h3(V0, T ))−N

(
h4(V0, T )

))

+ β1V0e
−κT R2ã+2

0

(
N

(
h5(V0, T )

)−N
(
h6(V0, T )

))
.

It remains to find D3(0, T ) – that is, the part of bond’s value associated with the possibility of
forced bankruptcy before the bond’s maturity date T. To this end, it is enough to calculate the
following expected value

v̄(0)EP∗
(
e(γ−r)τ̄11{τ̄<T}

)
= v̄(0)

∫ T

0

e(γ−r)s dP∗{τ̄ ≤ s},

where (see Example 1.2 of Lecture 4)

P∗{τ̄ ≤ s} = N

(
ln(v̄(0)/V0)− ν̃s

σ
√

s

)
+

(
v̄(0)
V0

)2ã

N

(
ln(v̄(0)/V0) + ν̃s

σ
√

s

)
.

Notice that v̄(0) < V0, and thus ln(v̄(0)/V0) < 0. Using (8.6), we obtain

v̄(0)
∫ T

0

e(γ−r)s dN

(
ln(v̄(0)/V0)− ν̃s

σ
√

s

)

=
V0(ã + ζ)

2ζ
Rθ−ζ

0 N
(
h8(V0, T )

)− V0(ã− ζ)
2ζ

Rθ+ζ
0 N

(
h7(V0, T )

)

and

v̄(0)2ã+1

V 2ã
0

∫ T

0

e(γ−r)s dN

(
ln(v̄(0)/V0) + ν̃s

σ
√

s

)

=
V0(ã + ζ)

2ζ
Rθ+ζ

0 N
(
h7(V0, T )

)− V0(ã− ζ)
2ζ

Rθ−ζ
0 N

(
h8(V0, T )

)
.

Consequently,

D3(0, T ) = β2V0

(
Rθ+ζ

0 N
(
h7(V0, T )

)
+ Rθ−ζ

0 N
(
h8(V0, T )

))
. (8.7)

This completes the proof of the proposition. 2

The financial interpretation of the coefficients β1 and β2 is that they reflect the bankruptcy (or
reorganization) costs incurred at the time of default. It is clear that as soon as β1 < 1 and/or
β2 < 1 the value of a defaultable bond is less than in case of zero bankruptcy costs, i.e., when
β1 = β2 = 1. In some circumstances, the values β1 < 1 and/or β2 < 1 can be interpreted as
reflecting the violation of the strict priority rule.
It should be noted that, similarly as in the case of the Merton model, the Black and Cox model
produces credit spreads close to zero for small maturities, a feature that is inconsistent with
empirical studies. The reason again is that the default time is predictable with respect to the
natural filtration of the value process V.
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8.1.2 Strict priority rule

For the sake of simplicity, we shall assume that β1 = β2 = 1, i.e., no bankruptcy/reorganization
costs are present. Suppose that the firm’s debt can be classified into senior bonds and (subor-
dinated) junior bonds, with the same maturity date T. At debt’s maturity, payments can be
made to the holders of junior bonds only if the promised payment to the holders of senior bonds
has been made. Such a convention is commonly referred to as the strict (or absolute) priority
rule. Assume that the total face value L of the firm’s liabilities equals L = Ls + Lj , where
Ls (Lj , resp.) is the face value of senior bonds (of junior bonds, resp.) Let u(Vt, t; L, v̄) stand
for the price D(t, T ) – given by Proposition 8.1 – of a defaultable bond in the Black and Cox
model, where, for the sake of convenience, we have introduced in the notation the face value L
and the barrier function v̄.

It is clear that the value Ds(t, T ) at time t < T of the senior debt equals, on the set {τ > t},
Ds(t, T ) = u(Vt, t; Ls, v̄)

and it amounts to min (v̄(τ), LsB(τ, T )) at time of default, provided that default has occurred
prior to the maturity date. The total value of firm’s debt equals, on the set {τ > t},

D(t, T ) = u(Vt, t;L, v̄)

and it equals v̄(τ) at time of default. Thus, the value of the junior debt is

Dj(t, T ) = D(t, T )−Ds(t, T ) = u(Vt, t; L, v̄)− u(Vt, t; Ls, v̄)

on the set {τ > t}, and it equals min (v̄(τ)−LsB(τ, T ), LjB(τ, T )) at time of default, provided
that the default has occurred prior to the maturity date. For instance, if v̄(t) = KB(t, T ) for
some constant K ≤ L then we have, on the set {τ > t},

Dj(t, T ) =





LjB(t, T ), if K = L,
D(t, T )− LsB(t, T ), if Ls ≤ K < L,
D(t, T )−Ds(t, T ), if K < Ls.

As one might easily guess, the above analysis can be extended to cover the case of several classes
of subordinated debt.

8.1.3 Special cases

Let us now analyze some special cases of the Black-Cox valuation formula. We shall assume
that β1 = β2 = 1, and the barrier function v̄ is chosen in such a way that K = L. Then
necessarily γ ≥ r (otherwise, condition (8.3) would be violated). Obviously, if K = L, then
K1(t) = K2(t) = 0, and thus D(t, T ) = D1(t, T ) + D3(t, T ), where:

D1(t, T ) = LB(t, T )
(
N

(
h1(Vt, T − t)

)−R2ã
t N

(
h2(Vt, T − t)

))
(8.8)

and
D3(t, T ) = Vt

(
Rθ+ζ

t N
(
h7(Vt, T − t)

)
+ Rθ−ζ

t N
(
h8(Vt, T − t)

))
. (8.9)

Case γ = r. If we also assume that γ = r, then ζ = −σ−2ν̃, and thus

VtR
θ+ζ
t = LB(t, T ), VtR

θ−ζ
t = VtR

2ã+1
t = LB(t, T )R2ã

t .
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Moreover, it is also easy to see that in this case

h1(Vt, T − t) =
ln(Vt/L) + ν(T − t)

σ
√

T − t
= −h7(Vt, T − t),

while

h2(Vt, T − t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
= h8(Vt, T − t).

We conclude that if v̄(t) = Le−r(T−t) = LB(t, T ), then D(t, T ) = LB(t, T ). This result is quite
intuitive; a defaultable bond with a safety covenant represented by the barrier function, which
equals the discounted value of the bond’s face value, is obviously equivalent to a default-free
bond with the same face value and maturity. Notice also that when γ = r but K < L, then we
have: D3(t, T ) = KB(t, T )P∗{τ < T | Ft}.
Case γ > r. If K = L but γ > r then one would expect that D(t, T ) would be smaller than
LB(t, T ). We shall show that when γ tends to infinity (all other parameters being fixed), then
the Black and Cox price converges to Merton’s price, that is,

lim
γ→∞

D(t, T ) = Vte
−κ(T−t)N

(− d1(Vt, T − t)
)

+ LB(t, T )
(
d2(Vt, T − t)

)
.

First, it is clear that h1(Vt, T − t) = d2(Vt, T − t). Furthermore, straightforward calculations
show that

lim
γ→∞

R2ã
t N

(
h2(Vt, T − t)

)
= lim

γ→∞
Rθ−ζ

t N
(
h8(Vt, T − t)

)
= 0

and thus the second term on the right-hand side of (8.8), as well as the second term on the
right-hand side of (8.9), vanish. Finally,

lim
γ→∞

Rθ+ζ
t N

(
h8(Vt, T − t)

)
= e−κ(T−t) N

(− d1(Vt, T − t)
)
,

since limγ→∞Rθ+ζ
t = e−κ(T−t) and limγ→∞ h7(Vt, T − t) = −d1(Vt, T − t).
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Credit Risk Modelling: Lecture 9

9 Black and Cox Model with Random Interest Rates

We shall examine a natural generalization of the Black and Cox (1976) approach, which takes
into account both the credit and interest rate risk. Formally, our goal is to extend the bond
valuation formula of Proposition 8.1 to the case of stochastic term structure of interest rates, as
specified by the Heath et al. (1992) approach. We make the following standing assumptions:
(i) the default triggering barrier v̄ equals v̄(t) = KB(t, T )f(t) for some constant K, and some
function f : [0, T ) → R+,
(ii) the volatility of the forward value of the firm follows a deterministic function.
To guarantee the existence of a closed-form solution for the value of a defaultable bond, the
function f in (ii) needs to be chosen in a judicious way (see expression (9.3) below). On the
other hand, to satisfy the second requirement above, we find it convenient to place ourselves
in the Gaussian Heath-Jarrow-Morton setup. More specifically, we assume that the bond price
volatility is a deterministic function.

We assume that the underlying probability space (Ω,F ,P), endowed with the filtration F =
(Ft)t≥0, is rich enough to support the short-term interest rate process r and the value process
V. Let us fix a finite time horizon T > 0. The dynamics under the spot martingale measure P∗
of the firm’s value and of the price of a default-free zero-coupon bond B(t, T ) are

dVt = Vt

(
(rt − κ(t)) dt + σ(t) dW ∗

t

)
, (9.1)

and
dB(t, T ) = B(t, T )

(
rt dt + b(t, T ) dW ∗

t

)
, (9.2)

respectively, where W ∗ is a d-dimensional standard Brownian motion. Furthermore, κ : [0, T ] →
R, σ : [0, T ] → Rd and b(·, T ) : [0, T ] → Rd are assumed to be bounded functions. In view of
(9.1)-(9.2), the forward value FV (t, T ) := Vt/B(t, T ) of the firm satisfies under the forward
martingale measure PT

dFV (t, T ) = −κ(t)FV (t, T ) dt + FV (t, T )
(
σ(t)− b(t, T )

)
dWT

t ,

where the process WT , given by the formula

WT
t = W ∗

t −
∫ t

0

b(u, T ) du, ∀ t ∈ [0, T ],

is known to follow a d-dimensional standard Brownian motion under PT . Let us introduce an
auxiliary process Fκ

V (t, T ) by setting, for t ∈ [0, T ],

Fκ
V (t, T ) = FV (t, T )e−

∫ T

t
κ(u) du

.

It is clear that Fκ
V (t, T ) follows a lognormally distributed martingale under PT , specifically,

dFκ
V (t, T ) = Fκ

V (t, T )
(
σ(t)− b(t, T )

)
dWT

t .
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Furthermore, it is apparent that Fκ
V (T, T ) = FV (T, T ) = VT . We consider the following modifi-

cation of the Black and Cox approach:

X = L, Zt = β2Vt, X̃ = β1VT , τ = inf { t ∈ [0, T ] : Vt < vt},

where β2, β1 ∈ [0, 1] are constants, and the barrier v is given by the formula

vt :=

{
KB(t, T )e

∫ T

t
κ(u) du

, for t < T,
L, for t = T,

(9.3)

where the constant K satisfies 0 < K ≤ L. Let us denote, for any t ≤ T,

κ(t, T ) =
∫ T

t

κ(u) du, σ2(t, T ) =
∫ T

t

|σ(u)− b(u, T )|2du,

where | · | is the Euclidean norm in Rd. We write briefly Ft = FV (t, T ), and we denote

η+(t, T ) = κ(t, T ) + 1
2σ2(t, T ), η−(t, T ) = κ(t, T )− 1

2σ2(t, T ).

Proposition 9.1 Let the barrier process v be given by (9.3). For any t < T, the forward price
FD(t, T ) = D(t, T )/B(t, T ) of a defaultable bond with the face value L and the maturity date T
equals, on the set {τ > t} = {τ̄ > t},

FD(t, T ) = L
(
N

(
ĥ1(Ft, t, T )

)− (Ft/K)e−κ(t,T )N
(
ĥ2(Ft, t, T )

))

+ β1Fte
−κ(t,T )

(
N

(
ĥ3(Ft, t, T )

)−N
(
ĥ4(Ft, t, T )

))

+ β1K
(
N

(
ĥ5(Ft, t, T )

)−N
(
ĥ6(Ft, t, T )

))

+ β2KJ1(Ft, t, T ) + β2Fte
−κ(t,T )J2(Ft, t, T ),

where

ĥ1(Ft, t, T ) =
ln (Ft/L)− η+(t, T )

σ(t, T )
,

ĥ2(Ft, T, t) =
2 ln K − ln(LFt) + η−(t, T )

σ(t, T )
,

ĥ3(Ft, t, T ) =
ln (L/Ft) + η−(t, T )

σ(t, T )
,

ĥ4(Ft, t, T ) =
ln (K/Ft) + η−(t, T )

σ(t, T )
,

ĥ5(Ft, t, T ) =
2 ln K − ln(LFt) + η+(t, T )

σ(t, T )
,

ĥ6(Ft, t, T ) =
ln(K/Ft) + η+(t, T )

σ(t, T )
,

and for any fixed 0 ≤ t < T and Ft > 0

J1,2(Ft, t, T ) =
∫ T

t

eκ(u,T ) dN

(
ln(K/Ft) + κ(t, T )± 1

2σ2(t, u)
σ(t, u)

)
.
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Remarks. Let us assume that β2 = β1 = 1. It can be checked that if b ≡ 0 and the coefficients
κ and σ are assumed to be constant, the term J1,2(Ft, t, T ) can be evaluated explicitly, and
the valuation formula of Proposition 9.1 reduces to the special case of the formula obtained in
Proposition 8.1 with γ = r − κ. It is worthwhile to stress that the choice of a barrier in the
following form:

vt =
{

v̄(t) = Ke−γ(T−t), for t < T,
L, for t = T,

instead of (9.3) does not lead to a closed-form solution, in general.

Before we proceed to the proof of Proposition 9.1, let us recall an auxiliary result. Assume that
Ỹt, t ∈ [0, U ], follows under P̃ a generalized Brownian motion with drift with respect to the
filtration F̃. Specifically,

Ỹt = Y0 + σW̃t + νt, Ỹ0 = ỹ0 > 0, (9.4)
where W̃t, t ∈ [0, U ], follows under P̃ a standard one-dimensional Brownian motion with respect
to F̃, and the coefficients σ > 0 and ν ∈ R are constants.

Lemma 9.1 Let τ̃ be the first passage time to zero by the process Ỹ given by formula (9.4),
specifically,

τ̃ = inf { t < U : Ỹt = 0}.
Then for any 0 < s ≤ U

P̃{τ̃ < s} = N

(−ỹ0 − νs

σ
√

s

)
+ e−2νσ−2ỹ0N

(−ỹ0 + νs

σ
√

s

)
,

where N is the standard normal cumulative distribution function. Furthermore, for any 0 ≤
u < s ≤ U and any y ≥ 0, we have, on the set {τ̃ > u},

P̃{Ỹs ≥ y, τ̃ ≥ s | F̃u} = N

(
−y + Ỹu + ν(s− u)

σ
√

s− u

)

− e−2νσ−2ỸuN

(
−y − Ỹu + ν(s− u)

σ
√

s− u

)
.

Proof of Proposition 9.1. Under the present assumptions, a defaultable bond is formally equiv-
alent to the contingent claim X which settles at the bond’s maturity date T, and is given by
the expression:

X := β1F
κ
V (T, T )11{τ̄≥T, VT <L} + L11{τ̄≥T, VT≥L} + β2vτ̄B−1(τ̄ , T )11{t<τ̄<T}.

Consequently, the forward price of a defaultable bond admits the following representation

FD(t, T ) = EPT

(
β1F

κ
V (T, T )11{τ̄≥T, VT <L} + L11{τ̄≥T, VT≥L}

∣∣∣Ft

)

+ β2 EPT

(
vτ̄B−1(τ̄ , T )11{t<τ̄<T}

∣∣∣Ft

)
.

The representation above is an immediate consequence of the definition of the forward martin-
gale measure PT . We conclude that we have, on the set {τ̄ > t},

FD(t, T ) = LPT

{
Fκ

V (T, T ) ≥ L, τ̄ ≥ T
∣∣Ft

}

+ β1 EPT

(
Fκ

V (T, T )11{F κ
V

(T,T )<L, τ̄≥T}
∣∣∣Ft

)

+ β2K EPT

(
eκ(τ̄ ,T ) 11{t<τ̄<T}

∣∣∣Ft

)
=: I1(t) + I2(t) + I3(t),
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where τ̄ equals (as usual, inf ∅ = +∞)

τ̄ = inf { t < T : Fκ
V (t, T ) ≤ K} = inf { t < T : Yt ≤ 0},

where in turn Yt := ln (Fκ
V (t, T )/K) for t ∈ [0, T ]. It is clear that

Yt = Y0 +
∫ t

0

(σ(u)− b(u, T )) dWT
u − 1

2

∫ t

0

|σ(u)− b(u, T )|2du.

We consider the following deterministic time change A : [0, T ] → R+ associated with Y :

At =
∫ t

0

|σ(u)− b(u, T )|2du.

Let A−1 : [0, AT ] → [0, T ] stand for the inverse time change. Then the time-changed process
Ỹt := YA−1

t
, t ∈ [0, AT ], follows under PT a one-dimensional Brownian motion with the drift

coefficient −1/2, with respect to the time-changed filtration F̃, where we set F̃t = FA−1
t

for

t ∈ [0, AT ] (cf. Revuz and Yor (1991)). More explicitly, Ỹ satisfies

Ỹt = Y0 + W̃t − 1
2 t, ∀ t ∈ [0, AT ],

for a certain (PT , F̃)-standard Brownian motion W̃ .

We shall first examine I1(t). Let us denote L̃ = ln (L/K), and let us set τ̃ := inf { t < AT :
Ỹt ≤ 0}. Notice that for any fixed t < T, we have, on the set {τ̄ > t} = {τ̃ > At},

PT

{
Fκ

V (T, T ) ≥ L, τ̄ ≥ T
∣∣Ft

}
= PT

{
ỸAT ≥ L̃, τ̃ ≥ AT

∣∣ F̃At

}
.

Making use of Lemma 9.1, with P̃ = PT , σ = 1, ν = −1/2, u = At and s = AT , we obtain

PT

{
ỸAT ≥ L̃, τ̃ ≥ AT

∣∣ F̃At

}

= N

(
ln (K/L) + ỸAt − 1

2 (AT −At)√
AT −At

)

− eỸAt N

(
ln (K/L)− ỸAt − 1

2 (AT −At)√
AT −At

)
.

Consequently, we have

I1(t) = LPT

{
ỸAT ≥ L̃, τ̃ ≥ AT

∣∣ F̃At

}

= LN

(
ln (Ft/L)− κ(t, T )− 1

2σ2(t, T )
σ(t, T )

)

− e−κ(t,T ) LFt

K
N

(
2 ln K − ln(FtL) + κ(t, T )− 1

2σ2(t, T )
σ(t, T )

)
.

This shows that

I1(t) = L
(
N

(
ĥ1(Ft, t, T )

)− (Ft/K)e−κ(t,T )N
(
ĥ2(Ft, t, T )

))
,

as expected.
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To simplify the notation, we shall evaluate I2(t) and I3(t) for t = 0 only. The case of t > 0
follows by similar arguments as those used in the derivation of the formula for I1(t), and thus
it presents no difficulties.

Let us focus on I2(0). In view of the definition of the processes Ỹ and A, we have

EPT

(
Fκ

V (T, T )11{F κ
V

(T,T )<L, τ̄≥T}
)

= KEPT

(
eỸAT 11{ỸAT

<L̃, τ̃≥AT }
)
,

and thus we may re-express I2(0) as follows:

I2(0) = β1K

∫ L̃

0

ex dPT {ỸAT < x, τ̃ ≥ AT }.

Using again Lemma 9.1, we obtain

dPT

{
ỸAT

< x, τ̃ ≥ AT

}

= dN

(
x− Ỹ0 + 1

2AT√
AT

)
+ eỸ0 dN

(
−x− Ỹ0 − 1

2AT√
AT

)

= dN

(
x− ln(F0/K) + κ(0, T ) + 1

2σ2(0, T )
σ(0, T )

)

+ e−κ(0,T ) F0

K
dN

(−x− ln(F0/K) + κ(0, T )− 1
2σ2(0, T )

σ(0, T )

)
.

Therefore, I2(0) = I21(0) + I22(0), where, by standard calculations

I21(0) = β1K

∫ L̃

0

ex dN

(
x− ln(F0/K) + κ(0, T ) + 1

2σ2(0, T )
σ(0, T )

)

= β1F0e
−κ(0,T )N

(
ln (L/F0) + κ(0, T )− 1

2σ2(0, T )
σ(0, T )

)

− β1F0e
−κ(0,T )N

(
ln(K/F0) + κ(0, T )− 1

2σ2(0, T )
σ(0, T )

)

= β1F0e
−κ(0,T )

(
N

(
ĥ3(F0, 0, T )

)−N
(
ĥ4(F0, 0, T )

))

and

I22(0) = β1e
−κ(0,T )F0

∫ L̃

0

ex dN

(−x− ln(F0/K) + κ(0, T )− 1
2σ2(0, T )

σ(0, T )

)

= β1KN

(
2 lnK − ln(LF0) + κ(0, T ) + 1

2σ2(0, T )
σ(0, T )

)

− β1KN

(
ln(K/F0) + κ(0, T ) + 1

2σ2(0, T )
σ(0, T )

)

= β1K
(
N

(
ĥ5(F0, 0, T )

)−N
(
ĥ6(F0, 0, T )

))
.

To establish the last two formulae, note that for any c 6= 0, and a, b, d ∈ R, we have (we set
here d̃ = d− c−1)

∫ b

a

ex dN(cx + d) = e
1
2 (d̃2−d2)

(
N(cb + d̃)−N(ca + d̃)

)
.
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Observe that I21(0) > 0 and I22(0) < 0; we always have I2(0) > 0, though. It remains to
evaluate I3(0), where

I3(0) = β2K EPT

(
eκ(τ̄ ,T ) 11{τ̄<T}

)
= β2K

∫ T

0

eκ(t,T ) dPT {τ̄ < t}.

In view of Lemma 9.1, we have

PT {τ̃ < s} = N

(
−Ỹ0 + 1

2s√
s

)
+ eỸ0N

(
−Ỹ0 − 1

2s√
s

)
,

where Ỹ0 = Y0, and, as before, τ̃ = inf { t < AT : Ỹt ≤ 0}. Since clearly PT {τ̄ < t} = PT {τ̃ <
At}, we obtain

PT {τ̄ < t} = N

(−Y0 + 1
2At√

At

)
+ eY0N

(−Y0 − 1
2At√

At

)

= N

(
ln K

F0
+ κ(0, T ) + 1

2At√
At

)
+ e−κ(0,T ) F0

K
N

(
ln K

F0
+ κ(0, T )− 1

2At√
At

)
.

We conclude that I3(0) = I31(0) + I32(0), where

I31(0) = β2K

∫ T

0

eκ(t,T ) dN

(
ln(K/F0) + κ(0, T ) + 1

2σ2(0, t)
σ(0, t)

)

= β2KJ1(F0, 0, T )

and

I32(0) = β2F0e
−κ(0,T )

∫ T

0

eκ(t,T ) dN

(
ln(K/F0) + κ(0, T )− 1

2σ2(0, t)
σ(0, t)

)

= β2F0e
−κ(0,T )J2(F0, 0, T ).

This completes the proof of Proposition 9.1. 2

To the best of our knowledge, explicit formulae for J1(Ft, t, T ) and J2(Ft, t, T ) are not avail-
able in the general time-dependent setup (even when, e.g., the dividend ratio κ is constant).
Incidentally, quite simple expressions for these two terms can be obtained provided that we set
κ = 0; that is, in the absence of dividends. The following result is an immediate corollary to
Proposition 9.1.

Corollary 9.1 Under the assumptions of Proposition 9.1, if κ ≡ 0 then

FD(t, T ) = L
(
N

(− d1(Ft, t, T )
)− (Ft/K)N

(
d6(Ft, t, T )

))

+ β1Ft

(
N

(
d2(Ft, t, T ))−N

(
d4(Ft, t, T )

))

+ β1K
(
N

(
d5(Ft, t, T ))−N

(
d3(Ft, t, T )

))

+ β2KN
(
d3(Ft, t, T )

)
+ β2FtN

(
d4(Ft, t, T )

)
,
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where

d1(Ft, t, T ) =
ln(L/Ft) + 1

2σ2(t, T )
σ(t, T )

= d2(Ft, t, T ) + σ(t, T ),

d3(Ft, t, T ) =
ln(K/Ft) + 1

2σ2(t, T )
σ(t, T )

= d4(Ft, t, T ) + σ(t, T ),

d5(Ft, t, T ) =
ln(K2/FtL) + 1

2σ2(t, T )
σ(t, T )

= d6(Ft, t, T ) + σ(t, T ).

Proof. Since the inequality Ft > K is satisfied on the set {τ̄ > t}, we have

J1(Ft, t, T ) =
∫ T

t

dN

(
ln(K/Ft) + 1

2σ2(t, u)
σ(t, u)

)

= N

(
ln(K/Ft) + 1

2σ2(t, T )
σ(t, T )

)

and

J2(F, t, T ) =
∫ T

t

dN

(
ln(K/Ft)− 1

2σ2(t, u)
σ(t, u)

)

= N

(
ln(K/Ft)− 1

2σ2(t, T )
σ(t, T )

)
.

The formula now follows from simple calculations. 2

Let us observe that the formula of Corollary 9.1 covers as a special case the valuation result
established by Briys and de Varenne (1997). In some other recent studies of first passage time
models, in which the triggering barrier is assumed to be either a constant or an unspecified
stochastic process, typically no closed-form solution for the value of a corporate debt is available,
and thus a numerical approach is required. The interested reader is referred to, among others,
Kim et al. (1993), Longstaff and Schwartz (1995), Nielsen et al. (1993), or Saá-Requejo and
Santa-Clara (1999).
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WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Mathematics and Information Science

Credit Risk Modelling: Lecture 10

10 Intensity-Based Valuation of Defaultable Claims

In this lecture, we present basic results that can be obtained through the intensity-based ap-
proach to the valuation of defaultable claims. We assume that we are given the underlying
probability space (Ω,G,Q∗), endowed with the filtration F = (Ft) t≥0 (of course, Ft ⊆ G for
any t). The probability measure Q∗ is interpreted as a spot martingale measure for our model
of securities market; the real-world probability measure will be denoted by Q. All processes
introduced below are defined on the probability space (Ω,G,Q∗).
We formally identify a defaultable claim with a quintuple DCT = (X, A, X̃, Z, τ). The default
time τ is an arbitrary non-negative random variable, which is defined on the underlying prob-
ability space (Ω,G,Q∗); in particular, Q∗{τ < +∞} = 1. For the sake of convenience, we shall
usually assume that Q∗{τ = 0} = 0 and Q∗{τ > t} > 0 for every t ∈ R+. For a given default
time τ, we introduce the associated jump process H by setting Ht = 11{τ≤t} for t ∈ R+. We
shall refer to H as the default process. It is obvious that H is a right-continuous process. Let H
be the filtration generated by the process H – i.e., Ht = σ(Hu : u ≤ t) = σ({τ ≤ u} : u ≤ t).

An essential role is played by the enlarged filtration G = H ∨ F. By definition, for every t we
set Gt = Ht∨Ft = σ(Ht,Ft). It should be emphasized that the default time τ is not necessarily
a stopping time with respect to the filtration F. On the other hand, τ is, of course, a stopping
time with respect to the filtration G. In most intensity-based models, the underlying filtration
G encompasses a certain Brownian filtration F; G is usually strictly larger than F, though. In
this case, the default time is usually modeled in such a way that it is not a predictable stopping
time with respect to the filtration G. Recall that if τ is a stopping time with the Brownian
filtration F, then it is necessarily a predictable stopping time.

The short-term interest rate process r follows an F-progressively measurable process, such that
the savings account B, given by the usual expression:

Bt = exp
( ∫ t

0

ru du
)
, ∀ t ∈ R+,

is well defined.

We introduce the following random variables and processes that specify the cash flows associated
with a defaultable claim:
• the promised contingent claim X, representing the payoff received by the owner of the

claim at time T, if there was no default prior to or at time T,

• the process A representing the promised dividends – that is, the stream of (continuous or
discrete) cash flows received by the owner of the claim prior to default,

• the recovery process Z, representing the recovery payoff at the time of default, if default
occurs prior to or at the maturity date T,

• the recovery claim X̃, representing the recovery payoff at time T, if default occurs prior to
or at the maturity date T.
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We shall postulate throughout that the processes Z and A are predictable with respect to
the reference filtration F, and that the random variables X and X̃ are FT -measurable. By
assumption, the promised dividends process A follows a process of finite variation, with A0 = 0.
As usual, the sample paths of all processes are assumed to be right-continuous functions, with
finite left-hand limits, with probability one. We shall assume without mentioning that all the
above random objects satisfy suitable integrability conditions that are needed for evaluating
the functionals introduced later on.

10.1 Risk-Neutral Valuation Formula

We place ourselves within the framework of an arbitrage-free financial market model. Specifi-
cally, we postulate that the underlying probability measure Q∗ is the spot martingale measure
(or the risk-neutral probability), meaning that the price process of any tradeable security, which
pays no coupons or dividends, necessarily follows a G-martingale under Q∗, when discounted
by the savings account B. Let us first recall the definitions of the dividend process and the price
process of a defaultable claim (see Definition 4.1).

Definition 10.1 The dividend process D of a defaultable claim DCT = (X,A, X̃, Z, τ) equals

Dt = Xd(T )11[T,∞[(t) +
∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu, (10.1)

where Xd(T ) = X11{τ>T} + X̃11{τ≤T}.

The next definition mimics Definition 4.2 of the price process (or the value process) of a default-
able claim. Expression (10.2) is henceforth referred to as the risk-neutral valuation formula.

Definition 10.2 The (ex-dividend) price process Xd(·, T ) of a defaultable claim DCT =
(X, A, X̃, Z, τ), which settles at time T, is given as

Xd(t, T ) = Bt EQ∗
( ∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
, ∀ t ∈ [0, T ]. (10.2)

Before presenting the no-arbitrage arguments supporting Definition 10.2, let us consider a few
special cases of the risk-neutral valuation formula (10.2). For the sake of brevity, we shall write
S0

t = Xd(t, T ). Combining (10.1) with (10.2), we obtain

S0
t = Bt EQ∗

( ∫

]t,T ]

B−1
u (1−Hu) dAu +

∫

]t,T ]

B−1
u Zu dHu + B−1

T Xd(T )
∣∣∣Gt

)
.

where, as before, we denote

Xd(T ) = X̃11{τ≤T} + X11{τ>T} = X̃HT + X(1−HT ).

If the claim does not pay any dividends prior to default – that is, if A ≡ 0, and if X̃ = 0, the
risk-neutral valuation formula simplifies to:

S0
t = Bt EQ∗

(
B−1

τ Zτ11{t<τ≤T} + B−1
T X11{τ>T}

∣∣∣Gt

)
. (10.3)
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It is apparent that in this case S0
t = 0 on the set {τ ≤ t}, and so

S0
t = 11{τ>t}Bt EQ∗

(
B−1

τ Zτ11{t<τ≤T} + B−1
T X11{τ>T}

∣∣∣Gt

)
. (10.4)

It should be stressed that we do not postulate here that a defaultable claim is attainable. In
fact, within the framework of the intensity-based approach, a defaultable claim typically cannot
be duplicated by trading in default-free securities, so that the standard arguments based on the
existence of a replicating strategy do not apply in this setting. On the other hand, the valuation
formula (10.2) can be supported by suitable no-arbitrage arguments. Let us briefly summarize
these arguments.

To this end, we assume that S1, . . . , Sn are price processes of n non-dividend paying primary
assets in our market model, with Sn = B. We do not need to be more specific about the nature
of primary assets here. It suffices to assume that the savings account B is well-defined. Let the
0th asset correspond to the defaultable claim so that S0

t = Xd(t, T ). We write φ = (φ0, . . . , φk)
to denote an G-predictable process representing a trading strategy. The wealth process U(φ) of
a strategy φ is given by the formula

Ut(φ) =
k∑

i=0

φi
tS

i
t , ∀ t ∈ [0, T ].

A strategy φ is called self-financing, provided that Ut(φ) = U0(φ) + Gt(φ) for every t ∈ [0, T ],
where the gains process G(φ) is defined as follows

Gt(φ) :=
∫

]0,t]

φ0
u dDu +

k∑

i=0

∫

]0,t]

φi
u dSi

u.

The following result is merely a reformulation of Corollary 4.1.

Proposition 10.1 For any self-financing trading strategy φ = (φ0, . . . , φk), the discounted
wealth process Ũt(φ) = B−1

t Ut(φ), t ∈ [0, T ], follows a local martingale under Q∗ with respect to
G.

It is customary to restrict the class of trading strategies, by postulating that the discounted
wealth of an admissible strategy follows a martingale under Q∗ (to this end, it suffices, for
instance, to consider only strategies with non-negative wealth processes). Proposition 10.1 shows
that if the original securities market model is arbitrage-free, and the ex-dividend price process
of an additional security (i.e., of a defaultable claim) is given by Definition 10.2, then the
arbitrage-free feature of the securities market model is preserved.

10.2 Valuation via the Hazard Process

Before stating the definition of the F-hazard process, let us quote the following useful formula:

Q∗{t < τ ≤ T | Gt} = 11{τ>t}
Q∗{t < τ ≤ T | Ft}
Q∗{τ > t | Ft} . (10.5)
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We denote Ft = Q∗{τ ≤ t | Ft}, and we shall postulate throughout that the inequality Ft < 1
is valid for every t ∈ R+. The survival process G of the random time τ with respect to the
reference filtration F equals

Gt := 1− Ft = Q∗{τ > t | Ft}, ∀ t ∈ R+.

Since {τ ≤ t} ⊆ {τ ≤ s}, for any 0 ≤ t ≤ s we have:

EQ∗(Fs | Ft) = EQ∗(Q∗{τ ≤ s | Fs} | Ft)
= Q∗{τ ≤ s | Ft} ≥ Q∗{τ ≤ t | Ft} = Ft,

and so the process F (the survival process G, resp.) follows a bounded, non-negative F-
submartingale (F-supermartingale, resp.) under Q∗. The hazard process of the default time,
given the flow of information represented by the filtration F, is formally introduced through the
following definition.

Definition 10.3 The F-hazard process of τ under Q∗, denoted by Γ, is defined through the
formula 1− Ft = e−Γt or, equivalently,

Γt := − ln Gt = − ln (1− Ft), ∀ t ∈ R+.

Since G0 = 1, it is clear that Γ0 = 0. In view of the equality Q∗{τ < +∞} = 1, it is also easy
to see that limt→∞ Γt = ∞. For the sake of conciseness, we shall refer to Γ as the F-hazard
process of τ, rather than the F-hazard process of τ under Q∗. If no risk of ambiguity arises, we
shall simply call it the hazard process of τ. Combining formula (10.5) with the definition of the
hazard process, we obtain

Q∗{t < τ ≤ T | Gt} = 11{τ>t}eΓt EQ∗
(
e−Γt − e−ΓT

∣∣Ft

)

= 11{τ>t}EQ∗
(
1− eΓt−ΓT

∣∣Ft

)
.

It is evident that the hazard process Γ is continuous if and only if the submartingale F, and thus
also the supermartingale G, follow continuous processes. Assume, in addition, that the sample
paths of F are non-decreasing functions; this amounts to postulating that the martingale part
of F vanishes. We adopt the widely used convention of calling such a process an increasing
continuous process. In this case, the hazard process Γ of τ also follows an increasing continuous
process. The following result is standard.

Proposition 10.2 Let Y be a G-measurable random variable and let t ≤ s. Then

EP(11{τ>t}Y | Gt) = 11{τ>t}EP(Y | Gt) = 11{τ>t}
EP(11{τ>t}Y | Ft)
P{τ > t | Ft} . (10.6)

Furthermore,
EP(11{τ>s} Y | Gt) = 11{τ>t} EP(11{τ>s} eΓtY | Ft) (10.7)

and
EP(11{t<τ≤s} Y | Gt) = 11{τ>t} EP(11{t<τ≤s} eΓtY | Ft). (10.8)

If Y is Fs-measurable, then

EP(11{τ>s} Y | Gt) = 11{τ>t} EP
(
eΓt−ΓsY | Ft

)
. (10.9)
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10.2.1 Stochastic intensity

In most reduced-form models of credit risk, the hazard process Γ of a default time is postu-
lated to have absolutely continuous sample paths (with respect to the Lebesgue measure on
R+). Specifically, it is assumed that the hazard process Γ of τ admits the following integral
representation

Γt =
∫ t

0

γu du, ∀ t ∈ R+,

for some non-negative, F-progressively measurable stochastic process γ, with integrable sample
paths. In addition, we assume that

∫∞
0

γu du = ∞, Q∗-a.s. The process γ is called the F-hazard
rate or the F-intensity of τ. It is also customary to refer to γ as the stochastic intensity of τ,
especially when the choice of the reference filtration F is clear from the context.

In terms of the stochastic intensity of a default time, the conditional probability of the default
event {t < τ ≤ T}, given the information Gt available at time t, equals

Q∗{t < τ ≤ T | Gt} = 11{τ>t}EQ∗
(
1− e

−
∫ T

t
γudu

∣∣∣Ft

)
, (10.10)

and the conditional probability of the non-default event {τ > T} equals

Q∗{τ > T | Gt} = 11{τ>t}EQ∗
(
e
−

∫ T

t
γudu

∣∣∣Ft

)
. (10.11)

10.2.2 Intensity function

In some instances, the intensity of a default time is non-random; in such cases, it is referred
to as the intensity function of τ. The concept of intensity function appears, for instance, when
the trivial filtration is chosen as the reference filtration F, so that G = H. To emphasize the
deterministic character of the hazard function, we shall write γ(t), rather than γt, and so
formulae (10.10)–(10.11) become

Q∗{t < τ < T |Ht} = 11{τ>t}
(
1− e

−
∫ T

t
γ(u)du

)
, (10.12)

and
Q∗{τ > T |Ht} = 11{τ>t}e

−
∫ T

t
γ(u)du

, (10.13)

respectively. Recall that Ht = σ(Hu : u ≤ t) = σ({τ ≤ u} : u ≤ t), and thus H = (Ht) t≥0 is
the natural filtration of the random time τ. The assumption that the filtration H models the
flow of information available to a trader amounts to saying that he has no access to the market
data other than the occurrence of the default time τ.

In some more general circumstances – for instance, when the default time τ is independent of
a (non-trivial) filtration F – it has a deterministic intensity with respect to F, and equalities
(10.12)–(10.13) remain valid with the σ-fieldHt replaced by a strictly larger σ-field Gt = Ht∨Ft.

10.3 Canonical Construction of a Default Time

We shall now briefly describe the most commonly used construction of a default time associated
with a given hazard process Γ. It should be stressed that the random time obtained through
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this particular method – which will be called the canonical construction in what follows –
has certain specific features that are not necessarily shared by all random times with a given
F-hazard process Γ. We assume that we are given an F-adapted, right-continuous, increasing
process Γ defined on a filtered probability space (Ω̃,F,P∗). As usual, we assume that Γ0 = 0
and Γ∞ = +∞. In many instances, Γ is given by the equality

Γt =
∫ t

0

γu du, ∀ t ∈ R+,

for some non-negative, F-progressively measurable intensity process γ.

To construct a random time τ such that Γ is the F-hazard process of τ, we need to enlarge the
underlying probability space Ω̃. This also means that Γ is not the F-hazard process of τ under P∗,
but rather the F-hazard process of τ under a suitable extension Q∗ of the probability measure P∗.
Let ξ be a random variable defined on some probability space (Ω̂, F̂ , Q̂), uniformly distributed
on the interval [0, 1] under Q̂. We consider the product space Ω = Ω̃ × Ω̂, endowed with the
product σ-field G = F∞ ⊗ F̂ and the product probability measure Q∗ = P∗ ⊗ Q̂. The latter
equality means that for arbitrary events A ∈ F∞ and B ∈ F̂ we have Q∗{A×B} = P∗{A}Q̂{B}.
An alternative way of achieving basically the same goal relies on postulating that the under-
lying probability space (Ω̃,F,P∗) is sufficiently rich to support a random variable ξ, uniformly
distributed on the interval [0, 1], and independent of the filtration F under P∗. In this version
of the canonical construction, Γ represents the F-hazard process of τ under P∗.

We define the random time τ : Ω → R+ by setting

τ = inf { t ∈ R+ : e−Γt ≤ ξ } = inf { t ∈ R+ : Γt ≥ η }, (10.14)

where the random variable η = − ln ξ has a unit exponential law under Q∗. It is not difficult
to find the process Ft = Q∗{τ ≤ t | Ft}. Indeed, since clearly {τ > t} = {ξ < e−Γt} and the
random variable Γt is F∞-measurable, we obtain

Q∗{τ > t | F∞} = Q∗{ξ < e−Γt | F∞} = Q̂{ξ < ex}x=Γt = e−Γt . (10.15)

Consequently, we have

1− Ft = Q∗{τ > t | Ft} = EQ∗
(
Q∗{τ > t | F∞} |Ft

)
= e−Γt , (10.16)

and so F is an F-adapted, right-continuous, increasing process. It is also clear that the process
Γ represents the F-hazard process of τ under Q∗. As an immediate consequence of (10.15) and
(10.16), we obtain the following interesting property of the canonical construction of the default
time:

Q∗{τ ≤ t | F∞} = Q∗{τ ≤ t | Ft}, ∀ t ∈ R+. (10.17)

Let us now analyze some important consequences of (10.17). First, we obtain

Q∗{τ ≤ t | F∞} = Q∗{τ ≤ t | Fu} = Q∗{τ ≤ t | Ft} = e−Γt (10.18)

for arbitrary two dates 0 ≤ t ≤ u. Notice that only the last equality in (10.18) is necessarily
satisfied by the F-hazard process Γ of τ ; the first two equalities are additional features of the
canonical construction of τ, meaning that they are not necessarily valid in a general set-up.
Equality (10.18) entails the conditional independence under Q∗ of the σ-fields Ht and Ft, given
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the σ-field F∞. Such a property of the two filtrations H and F is termed Condition (F.1). It
can be shown that Condition (F.1) is equivalent to Condition (M.1), which can be stated as
follows: an arbitrary F-martingale also follows a G-martingale under Q∗. The latter condition
was previously studied by, among others, Brémaud and Yor (1978), Kusuoka (1999) and Elliott
et al. (2000). We have the following result. Its proof is left to the reader.

Lemma 10.1 Assume that the process Γ is continuous. Then the (F,G)-martingale hazard
process Λ of the random time τ, given by (10.14), coincides with the F-hazard process Γ of τ.

Remarks. In most credit risk models, the reference filtration F is generated by the process
W that follows a Brownian motion under P∗. In view of the martingale invariance property,
the canonical construction ensures that the Brownian motion process W remains a continuous
martingale (and thus a Brownian motion) under the extended probability measure Q∗ and with
respect to the enlarged filtration G. Let us stress again that Q∗{A× Ω̂} = P∗{A} for any event
A ∈ F∞; that is, the restriction of the probability measure Q∗ to the σ-field F∞ coincides with
P∗.

Example 10.1 Deterministic hazard process. Let us assume that the underlying filtration F is
non-trivial, but the F-hazard process Γ is postulated to follow a deterministic function; that is,
the F-hazard process equals Γ for some function Γ : R+ → R+. Assume that the default time τ
is defined as before – i.e.,

τ = inf { t ∈ R+ : e−Γ(t) ≤ ξ }.
We claim that the default process H is independent of the filtration F or, equivalently, that the
filtration H generated by the default process H is independent of the filtration F under Q∗. It
suffices to check that we have, for any fixed t ∈ R+ and arbitrary 0 ≤ u ≤ t,

Q∗{τ ≤ u | Ft} = Q∗{τ ≤ u}. (10.19)

Equality (10.19) easily follows from (10.18). In effect, we have

Q∗{τ ≤ u | Ft} = Q∗{τ ≤ u | Fu} = 1− e−Γ(u) = Q∗{τ ≤ u},

where the last equality is a consequence of the assumption that the hazard process is determin-
istic.

If the default process H is independent of the filtration F then any F-adapted process Y is
independent of H under Q∗. In particular, since the short-term rate r follows an F-adapted
process, processes H and r are mutually independent under Q∗ when the F-hazard process of
τ is deterministic, and the default time τ is constructed through the canonical approach.

Example 10.2 State variables. In some financial models, it is assumed that the reference
filtration F is generated by some stochastic process, Y say. More specifically, the F-intensity of
the default time is given by the equality

Γt =
∫ t

0

g(u, Yu) du, ∀ t ∈ R+,

for some function g : R+×Y → R+ satisfying mild technical assumptions, where Y denotes the
state space for the process Y (typically, Y = Rd).
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10.4 Integral Representation of the Value Process

Our next goal is to establish a convenient representation for the pre-default value of a defaultable
claim in terms of the hazard process Γ of the default time. For the sake of conciseness, we denote

It(A) = Bt EQ∗
( ∫

]t,T ]

B−1
u (1−Hu) dAu

∣∣∣Gt

)

and
Jt(Z) = Bt EQ∗

(
11{t<τ≤T}B−1

τ Zτ

∣∣Gt

)
.

We shall also write

K̃t = Bt EQ∗
(
B−1

T X̃11{τ≤T}
∣∣Gt

)
, Kt = Bt EQ∗

(
B−1

T X11{T<τ}
∣∣Gt

)
.

It is thus clear that S0
t = It(A) + Jt(Z) + K̃t + Kt. Let us stress that we do not need to assume

here that the default time τ was constructed through the canonical method.

Proposition 10.3 The pre-default value process S0
t of a defaultable claim (X,A, 0, Z, τ) admits

the following representation for t ∈ [0, T ]

S0
t = 11{τ>t}G

−1
t Bt EQ∗

( ∫

]t,T ]

B−1
u (Gu dAu − Zu dGu) + GT B−1

T X
∣∣∣Ft

)
.

If the survival process G, and thus also the hazard process Γ, are continuous, then

S0
t = 11{τ>t}Bt EQ∗

( ∫

]t,T ]

B−1
u eΓt−Γu (dAu + Zu dΓu) + B−1

T XeΓt−ΓT

∣∣∣Ft

)
.

Proofs of the next two auxiliary results are omitted (for details, see Appendix 2)

Lemma 10.2 Let h : R+ → R be a bounded, continuous function. Then for any t < s ≤ ∞

EP(11{t<τ≤s}h(τ) | Gt) = 11{τ>t}eΓt EP
( ∫

]t,s]

h(u) dFu

∣∣∣Ft

)
. (10.20)

Let Z be a bounded, F-predictable process. Then for any t < s ≤ ∞

EP(11{t<τ≤s}Zτ | Gt) = 11{τ>t}eΓt EP
( ∫

]t,s]

Zu dFu

∣∣∣Ft

)
. (10.21)

Lemma 10.3 Assume that A is a bounded, F-predictable process of finite variation. Then for
every t ≤ s

EP
( ∫

]t,s]

(1−Hu) dAu

∣∣∣Gt

)
= 11{τ>t}eΓtEP

( ∫

]t,s]

(1− Fu) dAu

∣∣∣Ft

)

or, equivalently,

EP
( ∫

]t,s]

(1−Hu) dAu

∣∣∣Gt

)
= 11{τ>t}EP

( ∫

]t,s]

eΓt−Γu dAu

∣∣∣Ft

)
.
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Proof of Proposition 10.3. Since X̃ = 0, it is obvious that K̃t = 0 for t ∈ [0, T ], and so the
value process satisfies: S0

t = It(A)+Jt(Z)+Kt. By applying Lemma 7.3 to the process of finite
variation

∫
]0,t]

B−1
u dAu, we obtain

It(A) = 11{τ>t}G
−1
t Bt EQ∗

(∫

]t,T ]

B−1
u Gu dAu

∣∣∣Ft

)

or, equivalently,

It(A) = 11{τ>t}Bt EQ∗
( ∫

]t,T ]

B−1
u eΓt−Γu dAu

∣∣∣Ft

)
.

Furthermore, formula (7.21) of Lemma 7.2 yields

Jt(Z) = −11{τ>t}G
−1
t Bt EQ∗

(∫

]t,T ]

B−1
u Zu dGu

∣∣∣Ft

)
.

If, in addition, the survival process G is a continuous (and thus a decreasing) process, the hazard
process Γ is an increasing continuous process, and

Jt(Z) = 11{τ>t}Bt EQ∗
( ∫ T

t

B−1
u eΓt−ΓuZu dΓu

∣∣∣Ft

)
.

Finally, it follows from (7.6) that

Kt = 11{τ>t}G
−1
t Bt EQ∗(11{τ>T}B

−1
T X | Ft). (10.22)

Since the random variables X and BT are FT -measurable, we also have (see (7.9))

Kt = 11{τ>t}G
−1
t Bt EQ∗(GT B−1

T X | Ft) = 11{τ>t}Bt EQ∗
(
B−1

T XeΓt−ΓT | Ft

)
.

Both formulae of the proposition are obtained upon summation. 2

Corollary 10.1 Assume that the F-hazard process Γ follows a continuous process of finite
variation. Then the pre-default value of a defaultable claim (X,A, 0, Z, τ) coincides with the
pre-default value of a defaultable claim (X, Â, 0, 0, τ), where Ât = At +

∫ t

0
Zu dΓu.

Remarks. We have omitted in Proposition 10.3 the recovery payoff X̃, since the expression
based on the hazard process of the default time does not easily cover the case of a general
FT -measurable random variable. However, in the special case when X̃ = δ for some constant δ,
it suffices to substitute X̃ with an equivalent payoff δB(τ, T ) at time of default.

Let us return to the case of the default time that admits the stochastic intensity γ. The second
formula of Proposition 10.3 now takes the following form

S0
t = 11{τ>t} EQ∗

( ∫

]t,T ]

e
−

∫ u

t
(rv+γv)dv (dAu + γuZu du)

∣∣∣Ft

)

+ 11{τ>t} EQ∗
(
e
−

∫ T

t
(rv+γv)dv

X
∣∣∣Ft

)
.
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To get a more concise representation for the last expression, we introduce the default-risk-
adjusted interest rate r̃ = r + γ and the associated default-risk-adjusted savings account B̃,
given by the formula

B̃t = exp
( ∫ t

0

r̃u du
)
, ∀ t ∈ R+. (10.23)

Although B̃t does not represent the price of a tradeable security, it has similar features as
the savings account B; in particular, B̃ also follows an F-adapted, continuous process of finite
variation. In terms of the process B̃, we have

S0
t = 11{τ>t}B̃t EQ∗

(∫

]t,T ]

B̃−1
u dAu +

∫ T

t

B̃−1
u Zuγu du + B̃−1

T X
∣∣∣Ft

)
. (10.24)

It is noteworthy that the default time τ does not appear explicitly in the conditional expectation
on the right-hand side of (10.24).
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WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Mathematics and Information Science

Credit Risk Modelling: Lecture 11

11 Various Recovery Schemes

In this lecture, we shall examine few application the intensity-based approach to the valuation
of basic examples of defaultable contingent claim. For further examples, we refer to, e.g., Jarrow
and Turnbull (1995), Duffie et al. (1997), Duffie (1998), Lando (1998), and Schönbucher (1998).

11.1 Case of a Deterministic Intensity

For the sake of simplicity, we shall assume in this section that the default time τ admits the
intensity function γ with respect to F, and the continuously compounded interest rate r is
deterministic. In view of the latter assumption, at time t the price of a unit default-free zero-
coupon bond of maturity T equals

B(t, T ) = e
−

∫ T

t
r(v) dv

, ∀ t ∈ [0, T ].

Our goal is to derive some integral representations for the pre-default values of simple defaultable
claims. We take A ≡ 0, X̃ = 0 and Zτ = h(τ) for some continuous function h : R+ → R. If, in
addition, the promised payoff X is non-random, the pre-default value of the claim equals

S0
t = 11{τ>t}Bt

(∫ T

t

e
−

∫ u

t
γ(v)dv

B−1
u γ(u)h(u) du + B−1

T Xe
−

∫ T

t
γ(v)dv

)

or, equivalently,

S0
t = 11{τ>t}

( ∫ T

t

e
−

∫ u

t
r̃(v)dv

γ(u)h(u) du + Xe
−

∫ T

t
r̃(v)dv

)
, (11.1)

where r̃(v) = r(v) + γ(v).

Remarks. Let us again stress that S0
t represents only the pre-default value of a defaultable

claim. At any date t, the discounted payoff of the defaultable claim introduced above is given
by the following expression

Yt = 11{τ≤T} h(τ)e−
∫ τ

t
r(v)dv + 11{τ>T}Xe

−
∫ T

t
r(v)dv

.

Thus, the ‘full’ value at time t of a defaultable claim equals

EQ∗(Yt |Ht) = 11{τ>t}
( ∫ T

t

e
−

∫ u

t
r̃(v)dv

h(u)γ(u) du + Xe
−

∫ T

t
r̃(v)dv

)

+ 11{τ≤t}h(τ)e
∫ t

τ
r(v)dv

.

The additional third term in the last formula represents the current value of the recovery cash
flow h(τ) received by the owner of the claim at the time of default, and reinvested in the savings
account.
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Let us consider few examples of corporate zero-coupon bonds with maturity date T that are
subject to various recovery schemes. In the next section, we shall study these schemes in the
context of general contingent claims. In all cases examined below, the pre-default value of a
corporate bond appears to be proportional to the bond’s face value, L. In what follows, when
referring to the pre-default values of corporate bonds, we shall usually set L = 1 and we shall
suppress L from the notation.

11.1.1 Zero recovery

Let us first consider a corporate zero-coupon bond with zero recovery at default. This corre-
sponds to the choice of h = 0 and X = L = 1 in (11.1). Denoting by D0(t, T ) the pre-default
value at time t of such a bond, for every t ∈ [0, T ] we obtain:

D0(t, T ) = 11{τ>t}e
−

∫ T

t
(r(v)+γ(v))dv = 11{τ>t}B(t, T )e−

∫ T

t
γ(v)dv

.

Under the zero recovery scheme, the corporate bond becomes, of course, valueless as soon as
the default occurs.

11.1.2 Fractional recovery of par value

Let us assume that the recovery function h satisfies h = δL = δ for some constant recovery
coefficient 0 ≤ δ ≤ 1. The corresponding recovery scheme is aptly termed the fractional recovery
of par value. The pre-default value at time t of a corporate bond that is subject to this recovery
scheme, denoted by D̃δ(t, T ), equals

D̃δ(t, T ) = 11{τ>t}
(∫ T

t

e
−

∫ u

t
r̃(v) dv

δγ(u) du + e
−

∫ T

t
r̃(v) dv

)
.

Notice that D̃δ(t, T ) represents the value before default of a corporate bond that pays at time
of default a constant payoff proportional to the bond’s face value, in case the bond defaults
before or at the bond’s maturity date T. However, it is clear that constant coefficient δ can be
replaced by some function δ(t) of time (the same remark applies to the next recovery scheme).

11.1.3 Fractional recovery of Treasury value

Let us finally assume that the recovery function equals

h(τ) = δLe
−

∫ T

τ
r(v) dv = δe

−
∫ T

τ
r(v) dv

. (11.2)

The above specification of the recovery function describes a corporate zero-coupon bond with
the so-called fractional recovery of Treasury value. Indeed, since the payoff h(τ) can be invested
in the savings account, we may formally postulate that the bond pays the constant payoff δ at
maturity T if default occurs before maturity (otherwise, it pays the nominal value L = 1). We
may thus equally well postulate that the recovery payoff at default equals

h(τ) = δB(τ, T ). (11.3)

Under the present assumptions, the two alternative specifications, (11.2) and (11.3), yield an
identical pre-default value of a corporate bond with the fractional recovery of Treasury value.
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It is thus interesting to notice that the latter specification is much more convenient if random
character of interest rates is taken into account. Indeed, in all models the current value bond
price B(τ, T ) is known at time τ, and thus one can always define the recovery process Z by
setting Zt = δB(t, T ) for every t ∈ [0, T ]. On the other hand, the right-hand side of (11.2) is
not observed at time τ under the uncertainty of interest rates.

Let us denote by Dδ(t, T ) the pre-default value of a unit corporate bond with the fractional
recovery of Treasury value. By plugging (11.2) into the general formula (11.1), we obtain

Dδ(t, T ) = 11{τ>t}
(∫ T

t

e
−

∫ T

t
r(v)dv

e
−

∫ u

t
γ(v)dv

δγ(u) du + e
−

∫ T

t
r̃(v)dv

)
,

that is,

Dδ(t, T ) = 11{τ>t}B(t, T )
{

δ
(
1− e

−
∫ T

t
γ(v) dv

)
+ e

−
∫ T

t
γ(v) dv

}
.

We end this example by noticing that the pre-default value Dδ(t, T ) of a corporate bond with
the fractional recovery of Treasury value can also be expressed as follows (see (10.10))

Dδ(t, T ) = B(t, T )
(
δQ∗{t < τ ≤ T | Gt}+Q∗{τ > T | Gt}

)
.

It is worth stressing that the last representation, though apparently universal, in fact hinges on
the non-random character of interest rates postulated in this section. In a more general setting,
we need to impose some further assumptions, as well as to substitute the spot martingale
measure Q∗ with the associated forward martingale measure QT .

11.2 Implied Probabilities of Default

Simple valuation formulae based on the intensity function are frequently used by practitioners
in order to calibrate the model. The basic idea is to derive the default probabilities implicit in
market quotes of traded defaultable securities (corporate bonds, default swaps, etc.), and to
subsequently use these probabilities to value defaultable securities that are not quoted in the
market. It is apparent that such an approach to model’s calibration parallels the widely popular
method of using implied volatilities of publicly traded (or at least liquid) options to value these
exotic options for which the market quotes are either not available, or not reliable. Typically,
it is postulated that:

• the interest rate process and the default process are mutually independent under the spot
martingale measure Q∗,

• the default can only be observed at some date from a given finite collection of dates
0 < T1 < · · · < Tn = T ∗, for some horizon date T ∗,

• we are given the default-free term structure of interest rates, formally identified here with
the prices B(0, Ti), i = 1, . . . , n of zero-coupon Treasury bonds.

The first assumption means that we are interested in finding the intensity function, as opposed
to the intensity process with respect to some non-trivial filtration F. The second means that we
are not interested in the exact behavior of the intensity function between the ‘observed default
dates,’ so that we may adopt a convention that the intensity function is constant between each
two dates Ti and Ti+1.
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In view of the preceding discussion, we may, and do, assume that the intensity function λ :
[0, T ∗] → R+ satisfies λ(t) =

∑n
i=1 αi11[Ti−1,Ti[(t) for some positive constants αi, i = 0, . . . , n−1.

This in turn amounts to postulate that the probabilities of survival satisfy, for j = 1, . . . , n,

G(Tj) = Q∗{τ ≥ Tj} = 1− exp
(
−

j∑

i=1

αi(Ti − Ti−1)
)

or, equivalently, that for every j = 1, . . . , n

q∗j := Q∗{Tj−1 < τ ≤ Tj} = G(Tj)−G(Tj−1) = exp
(− αj(Tj − Tj−1)

)
.

Notice that in general the inequality
∑n

j=1 q∗j = Q∗{τ ≤ Tn} ≤ 1 is valid (we set T0 = 0). In
other words, we do not need to assume that the default will definitely happen before or at the
horizon date T ∗.

Example 11.1 Let us assume, for instance, that our goal is to calibrate the model to market
quotes of a family of default swaps. For simplicity, we assume that T1, . . . , Tn are payment
dates, and Tn is the maturity of the contract. Under the independence assumption, the present
value at time 0 of the default payment leg is

I1 =
n∑

i=1

B(0, Ti)XTiq
∗
i =

n∑

i=1

B(0, Ti)XTi

(
G(Ti)−G(Ti−1)

)
,

where the (non-random) payoffs XTi are typically expressed either as some fixed amounts, or
as a percentage of the present value of the future coupons and the face value of the underlying
bond discounted at the risk-free rate.

The premium payment leg is defined as a stream of fixed cash flows κ that are paid until the
maturity of the contract or until default, whichever comes first. The present value of these cash
flows at time 0 equals

I2 = B0 EQ∗
( n∑

i=1

11{Ti−1<τ≤Ti}
i∑

j=1

B−1
Tj

κ
∣∣∣G0

)

= κ

n∑

i=1

q∗i

i∑

j=1

B(0, Tj) = κ

n∑

i=1

B(0, Ti)
i∑

j=1

q∗j

= κ

n∑

i=1

B(0, Ti)Q∗{τ ≤ Ti} = κ

n∑

i=1

B(0, Ti)(1−G(Ti)).

Given a portfolio of default swaps and their market quotes, we may search for the values of
αi, i = 0, . . . , n− 1. The calibration procedure relies on solving non-linear equation of the form
I1 = I2. In principle, the quoted default swaps should be repriced correctly within the calibrated
model. Using this approach, we may not only value new issues of contracts that are exposed to
the default risk of the underlying entity, but we may also mark to market outstanding default
swaps and other defaultable contracts.
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11.3 Exogenous Recovery Rules

We shall now return to the case of a defaultable claim DCT = (X,A, 0, Z, τ). In Sect. 11.1,
we have briefly presented several alternative recovery rules in the context of intensity-based
valuation of a corporate bond. As expected, these schemes can be extended to the case of an
arbitrary defaultable claim. We shall now examine these extensions in some detail.

11.3.1 Fractional recovery of par value

We need to assume here that the par value (or the face value) of a defaultable claim is well
defined. Denoting by L the constant representing the claim’s par value and by δ the claim’s
recovery rate, we set Zt = δL. Therefore, the pre-default value, denoted by D̃δ

t , equals

D̃δ
t = Bt EQ∗

(∫

]t,T ]

B−1
u (1−Hu) dAu +

∫

]t,T ]

B−1
u δL dHu + B−1

T X11{τ>T}
∣∣∣Gt

)
.

Consequently, by virtue of Proposition 10.3,

D̃δ
t = 11{τ>t}G

−1
t Bt EQ∗

( ∫

]t,T ]

B−1
u (Gu dAu − δL dGu) + GT B−1

T X
∣∣∣Ft

)
,

where G is the survival process of τ with respect to the reference filtration F. In the case of a
continuous survival process G, the last formula yields

D̃δ
t = 11{τ>t}Bt EQ∗

(∫

]t,T ]

B−1
u eΓt−Γu (dAu + δL dΓu) + B−1

T XeΓt−ΓT

∣∣∣Ft

)
,

where Γt = − ln Gt is the F-hazard process of the default time.

Example 11.2 Let us first assume that A ≡ 0. We shall write U(t, T ) to denote the price of
a digital default put – that is, a default-risk sensitive security, which pays one unit of cash at
time τ if default occurs prior to or at T, and pays zero otherwise. Formally, a digital default
put corresponds to a defaultable claim of the form (0, 0, 0, 1, τ). We have U(t, T ) = D̃1(t, T )−
D0(t, T ) or, more explicitly,

U(t, T ) = Bt EQ∗(B−1
τ 11{τ≤T} | Gt).

Let QT be the T -forward martingale measure, associated with Q∗ through the formula

dQT

dQ∗
=

1
B(0, T )BT

, Q∗-a.s.

Using the abstract Bayes rule, we obtain the following representation for the price of a default-
able claim in terms of the forward martingale measure

D̃δ
t = 11{τ>t}δLS(t, T ) + 11{τ>t}B(t, T )EQT

(
XeΓt−ΓT

∣∣Ft

)
.

Notice that the hazard process of τ is not affected by the change of probability measure from
Q∗ to QT . If the promised dividends process A does not vanish, we need to add an extra term
on the right-hand side of the last equality.
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As already observed in Corollary 10.1, if the F-hazard process Γ follows a continuous process
of finite variation, we may set Z ≡ 0 and substitute the promised dividends process A with the
process Ât = At + δLΓt. In other words, from the point of view of arbitrage-free valuation the
two defaultable claims (X, A, X̃, δL, τ) and (X, A + δLΓ, X̃, 0, τ) are essentially equivalent if Γ
is a continuous process of finite variation.

Finally, if the default time τ admits the F-intensity process γ, then we have (cf. (10.24))

D̃δ
t = 11{τ>t}B̃t EQ∗

( ∫

]t,T ]

B̃−1
u dAu + δL

∫ T

t

B̃−1
u γu du + B̃−1

T X
∣∣∣Ft

)
,

where the default-risk-adjusted savings account B̃ is given by (10.23). If, in addition, the sample
paths of the process A are absolutely continuous functions: At =

∫ t

0
au du, then

D̃δ
t = 11{τ>t}B̃t EQ∗

( ∫ T

t

B̃−1
u (au + δLγu) du + B̃−1

T X
∣∣∣Ft

)

= 11{τ>t}B̃t EQ∗
( ∫ T

t

B̃−1
u (auγ−1

u + δL)γu du + B̃−1
T X

∣∣∣Ft

)
,

where the last equality holds, provided that γ > 0. We may here choose, without loss of
generality, F-predictable versions of processes a and γ. In view of the considerations above,
we are in a position to state the following corollary, which furnishes still another equivalent
representation of a defaultable claim with fractional recovery of par value.

Corollary 11.1 Assume that At =
∫ t

0
au du and Γt =

∫ t

0
γu du with γ > 0. Then a defaultable

claim (X, A, X̃, δL, τ) is equivalent to a defaultable claim (X, 0, X̃, Ẑ, τ), where Ẑt = δL+atγ
−1
t .

11.3.2 Fractional recovery of no-default value

In case of a general contingent claim, the counterpart of the fractional recovery of Treasury value
scheme is referred to as the fractional recovery of no-default value. In this scheme, it is assumed
that the owner of a defaultable claim receives at time of default a fixed fraction of a market
value of an equivalent non-defaultable security. By definition, the no-default value (also known
as the Treasury value) of a defaultable claim (X,A, X̃, Z, τ) is equal to the expected discounted
value of the promised dividends A and the promised contingent claim X, specifically:

Ut = Bt EQ∗
( ∫

[t,T ]

B−1
u dAu + B−1

T X
∣∣∣Gt

)
. (11.4)

Notice that U includes also the dividends paid at time t. When valuing a defaultable claim
(X, A, X̃, Z, τ) with fractional recovery of no-default value, we set X̃ = 0 and Zt = δUt, where
U is given by the last formula. Put more explicitly, the pre-default value equals

Dδ
t = Bt EQ∗

( ∫

]t,T ]

B−1
u (1−Hu) dAu +

∫

]t,T ]

B−1
u δUu dHu + B−1

T X11{τ>T}
∣∣∣Gt

)
.

Proposition 11.1 For any t < T we have Dδ
t = (1− δ)D̃0

t +11{τ>t}δŨt, where the process D̃0
t ,

which equals

D̃0
t = 11{τ>t}G

−1
t Bt EQ∗

( ∫

]t,T ]

B−1
u Gu dAu + GT B−1

T X
∣∣∣Ft

)
,
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represents the pre-default value of a defaultable claim (X, A, 0, 0, τ) with zero recovery and Ũt

is given by

Ũt = Bt EQ∗
( ∫

]t,T ]

B−1
u dAu + B−1

T X
∣∣∣Gt

)
. (11.5)

Proof. We shall sketch the proof. Since manifestly

Dδ
t = D̃0

t + δBt EQ∗
( ∫

]t,T ]

B−1
u Uu dHu

∣∣∣Gt

)
,

it suffices to show that the following equality is valid:

11{τ>t}Ũt = Bt EQ∗
( ∫

]t,T ]

B−1
u (1−Hu) dAu + B−1

T X11{τ>T}
∣∣∣Gt

)
+ J,

where we have set
J := Bt EQ∗

(∫

]t,T ]

B−1
u Uu dHu

∣∣∣Gt

)
.

But

J = Bt EQ∗
( ∫

]t,T ]

EQ∗
( ∫

[u,T ]

B−1
v dAv + B−1

T X
∣∣∣Gu

)
dHu

∣∣∣Gt

)

= Bt EQ∗
( ∫

]t,T ]

( ∫

[u,T ]

B−1
v dAv + B−1

T X
)
dHu

∣∣∣Gt

)

= Bt EQ∗
(
11{τ>t}

∫

]t,T ]

B−1
u Hu dAu + B−1

T X11{t<τ≤T}
∣∣∣Gt

)
,

where we have used, in particular, Fubini’s theorem. 2
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