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Main points

• Financial models may not be completely spec-

ified, or specified in terms of unknown quanti-

ties (unknown parameters, hidden processes,..)

→ Instead of a fixed model, an entire family

of models.

• Identify the model within the class by esti-

mating unobserved quantities possibly in a

dynamic/recursive way and this is where

stochastic filtering comes in.

→ Estimation obtained by filtering the infor-

mation coming from observing over time

prices not only of underlying primary as-

sets, but also of derivatives.

• Filtered information useful for portfolio opti-

mization, but also for pricing of illiquid deriva-

tives.

→ Problem : Derivative prices are specified

as expectations under a martingale measured

(MM); observations occur under the real world

measure.



OUTLINE

• The case when the underlyings have a

market and their prices are Markovian

• Underlyings have a market but are not

Markovian (factor models)

• Filtering for derivative pricing under par-

tial observation (a general setup)

• Filtering for pricing under partial obser-

vation in factor models (a specific setup)



1. Underlying asset prices are Markovian

• Standard B & S market model for underlyings

dSt = diag(St)Atdt + diag(St)Σtdwt

St = [S1
t , · · · , SN

t ]′

wt =[w1
t ,··· ,wM

t ]′ a (P,Ft)−Wiener,M ≥ N .

• Given a claim H(ST ), its t−price (t ≤ T ) is

Π(t, St) = e−
∫ T
t rsdsEQ{H(ST ) | Ft}

= e−
∫ T
t rsdsEQ{H(ST ) |St}

where rt is assumed to be deterministically

given and, under Q,

dSt = diag(St)rt1dt + diag(St)Σtdw
Q
t

with

dw
Q
t = dwt + θtdt

and θt = [θ1
t , · · · , θM

t ]′ s.t.

At − rt1 = Σtθt (market price of risk)



• If the market is complete then, for the only

purpose of derivative pricing, the knowledge

of Σt suffices, At is not needed.Σt estimated

either as implied or historical volatility. For

other purposes, e.g. portfolio optimization,

need also knowledge of At. Given Σt, At fol-

lows from θt

• If At and Σt and thus also θt are unobserved

then, by borrowing ideas from Bayesian statis-

tics, one may assume them to be stochastic

processes that could also be adapted to a fil-

tration larger than Fw
t (exogenous random-

ness). The market is then incomplete and

estimation of θ becomes important also for

derivative pricing.

→ Estimation should be based on observations

not only of St, but also of their derivatives.



Filtering approach (for estimation of θ)

• Assume on the market one can observe, in

addition to St, also K derivative prices Π∗
i (t) ,

i = 1, · · · , K so that the observation filtration

becomes

FO
t = σ{Su, Π∗

i (u) ; u ≤ t ; i = 1, · · · , K}

Problem : Given a a-priori dynamics for θt,

determine recursively

πt

(

θt | F
O
t

)

starting from a given π0(θ0).

→ Gives not only a point estimate but an entire,

continuously updated distribution.



Filter model

• Having assumed θt to be possibly affected by

exogenous randomness, we model it under P

as

dθt = κ(θ̄ − θt)dt + ρwdwt + ρvdvt

κ : diagonal matrix;

θ̄ = [θ̄1, · · · , θ̄M ]′;

ρw, ρv : matrices;

vt (multivariate) Wiener independent of wt;

π0(θ0) a given Gaussian initial distribution.

→ Reasonable to assume the evolution of θt to

be affected by that of the underlyings (driving

noise wt) and also of exogenous factors (noise

vt).



→ Need next the dynamics, under P , of the ob-

served prices

• Consider the (Q,Ft)−martingales

Y i
t = F i(t, St) := e

∫ T
t rsdsΠi(t, St)

= EQ{Hi(ST ) | Ft} ; i=1,··· ,K

By Itô’s formula and the martingality of Y i
t

dY i
t = dF i(t, St)

=
[

F i
t (·) + F i

S(·)diag(St)rt1

+ 1
2tr[Σ′

t diag(s)F i
SS(·)diag(s)Σt]

]

dt

+ F i
S(·)diag(St)Σtdw

Q
t

= F i
S(·)diag(St)Σtdw

Q
t



Observation dynamics under the real world

measure P















































dSt = diag(St)[rt1 + Σtθt]dt

+diag(St)Σtdwt

dY i
t = F i

S(t, St)diag(St)Σtθt

+F i
S(t, St)diag(St)Σtdwt



Synthesizing :































dθt = κ(θ̄−θt)dt+ρwdwt+ρvdvt

dSt = diag(St)[rt1+Σtθt]dt+diag(St)Σtdwt

dY i
t = F i

S(t,St)diag(St)Σtθtdt+F i
S(t,St)diag(St)Σtdwt

θt : unobservable (π0(θ0) given Gaussian);

St, Y
i
t (i = 1, · · · , K) : observable;

rt : supposed given;

Σt : given/observable (either through quadratic

variation or as implied volatility Σ̂t= Σ(St, Y
i
t , t)).

→ A model of the conditionally Gaussian type to

which the Kalman filter can be applied (the

parameters (κ, θ̄, ρw, ρv) may be estimated by

maximizing the likelihood of the innovations)

→ See [BCR, 2002].



2.Underlyings not Markovian themselves

(Factor models)

• Consider the (combined Markovian) model











dSt = diag(St)At(Zt)dt + diag(St)Σt(Zt)dwt

dZt = bt(Zt)dt + γt(Zt)dvt

wt, vt : independent multivariate Wiener

(vt : “exogenous randomness”);

St : observed asset price vector;

Zt : multivariate factor process

(hidden with known π0(Z0))

At(Zt),Σt(Zt) : may possess additional ran-

domness adapted to Fw
t .

→ The market is incomplete and estimation of

Zt is important also for derivative pricing

→ Again, estimate Zt on the basis of observa-

tions of St, but also of their derivatives.



• Given a claim H(ST ), its t−price (t ≤ T ) is

now

Π(t, St, Zt) = e−
∫ T
t rsdsEQ{H(ST ) | Ft}

where rt is again deterministically given and,

under Q,

dSt = diag(St)rt1dt + diag(St)Σt(Zt)dw
Q
t

with

dw
Q
t = dwt + θtdt

and θt the (unitary) market price of risk sat-

isfying

At(Zt) − rt1 = Σt(Zt)θt

→ The process θt may thus be considered as a

function

θt = θ(t, Zt)

but, as for At(Zt) and Σt(Zt), we shall assume

that it possesses also additional randomness

adapted to Fw
t .

→ The market is incomplete → different possible

MM.



• Applying Itô’s rule one has

dθt = dθ(t, Zt)

=
[

∂
∂t

θ(t, Zt) + ∂
∂Z

θ(t, Zt)bt(Zt)

+1
2tr

(

γ′
t(Zt)

∂2

(∂Z)2
θ(t, Zt)γt(Zt)

)]

dt

+ ∂
∂Z

θ(t, Zt)γt(Zt)dvt

:= Θt(Zt)dt + Ψt(Zt)dvt

→ Due to the additionally assumed randomness

adapted to Fw
t , we shall postulate for θt the

following dynamics under P

dθt = Θt(Zt)dt + ρwdwt + Ψt(Zt)dvt

→ Inferring θt on the basis of market data allows

to infer also the prevailing MM.



Filtering approach

• Given FO
t , determine recursively

πt(Zt, θt| F
O
t )

starting from a given π0(Z0, θ0).

• Analogously as before, put

Y i
t = F i(t, St, Zt) := e

∫ T
t rsdsΠi(t, St, Zt)

and the martingality of Y i
t under Q implies



































































F i
t (t,s,z)+F i

S(t,s,z)diag(s)rt1

+1
2tr[Σ′

t(z) diag(s)F i
SS(t,s,z)diag(s)Σt(z)]

+F i
Z(t,s,z)bt(z)+

1
2tr[γ′

t(z)FZZ(t,s,z)γt(z)]=0

∀ (t,s,z); i=1,··· ,K

F i(T,s,z)=Hi(s)



• Synthesizing, we obtain the following filter-

ing model (under P )







































































































dθt = Θt(Zt)dt + ρwdwt + Ψt(Zt)dvt

dZt = bt(Zt)dt + γt(Zt)dvt

dSt = diag(St)[rt1+Σt(Zt)θt]dt+diag(St)Σt(Zt)dwt

dY i
t = [F i

S(t, St, Zt)diag(St)Σt(Zt)θt]dt

+ F i
S(t, St, Zt)diag(St)Σt(Zt)dwt

+F i
Z(t, St, Zt)γt(Zt)dvt

i = 1, · · · , K

→ The only parameter in the model is now ρw.

One may thus either search for the complete

filter solution

πt(Zt, θt, ρ
w| FO

t )

or calibrate ρw by matching theoretical with

observed prices.



→ The filtering problem is now nonlinear and

the observation diffusion coefficients de-

pend on unobserved quantities

→ To overcome the latter difficulty : consider

noisy observations of the observable quanti-

ties (justified by bid-ask spread, mispricing,

a-synchronicity, etc...) with sufficiently small

observation noise to prevent arbitrage oppor-

tunities.

• Putting

Ȳ i
t =

{

Si
t , i = 1, · · · , N

Y i−N
t , i = N + 1, · · · , N + K

and denoting by ηi
t the (cumulative) noisy ob-

servations let

dηi
t = Ȳ i

t dt + dβi
t (i = 1, · · · , N + K)

where βt = (β1
t , · · · , βN+K

t )′ and Ȳ i
0 is sup-

posed to be observed without noise.

→ A specific application of this approach to eq-

uity markets is in [BCR, 2002], to bond mar-

kets in [CPR, 2001].



3.Filtering for derivative pricing under

partial information

(general setup)

• For the case of the previous factor model let

Ft = σ{ws, vs; s ≤ t} so that FO
t ⊂ F and

assume rt deterministically given.

• Considering a claim H(ST ) and a martingale

measure Q, define the t−price (t ≤ T ) of

H(ST ) with respect to the information FO
t

as

Π̃(t) = EQ
{

e−
∫ T
t rsdsH(ST ) | FO

t

}

→ It is an arbitrage-free price with respect to the

information represented by FO
t in the sense

that

Π̃(t)

Bt
= EQ

{

Π̃(T )

BT

| FO
t

}

with Bt = B0 exp
{

∫ t
0 rsds

}

→ To perform pricing of (illiquid OTC) deriva-

tives on the basis of the information FO
t , one

has thus to compute expectations of the form

EQ{H(ST ) | FO
t }



• Taking as Q the minimal MM, only wt is

translated, i.e.

dw
Q
t = dwt + θtdt

and one has

dQ

dP | FT

= LT with dLt = −Ltθtdwt ; L0 = 1

• By Bayes’ rule

EQ{H(ST ) | FO
t } =

EP{LTH(ST ) | FO
t }

EP{LT | FO
t }

For the given setup, the tuple (St, Zt, θt, Lt) is

Markov under P , thus

EP{LT H(ST ) | FO
t }=EP{EP{LT H(ST ) | Ft} | F

O
t }

= EP{ΨH(t, St, Zt, θt, Lt) | F
O
t }

for a suitable ΨH(·).

→ To compute the quantities of interest one

needs the filter distribution

πt(Zt, θt, Lt| F
O
t )

→ The practical implementability of this approach

depends on the specific problem at hand.



The filter model

For the given setup the filter model is, under P ,

synthesized as














































































































































dθt = Θt(Zt)dt + ρwdwt + Ψt(Zt)dvt

dLt = −Ltθtdwt

dZt = bt(Zt)dt + γt(Zt)dvt

dSt = diag(St)[rt1+Σt(Zt)θt]dt+diag(St)Σt(Zt)dwt

dY i
t = [F i

S(t, St, Zt)diag(St)Σt(Zt)θt]dt

+ F i
S(t, St, Zt)diag(St)Σt(Zt)dwt

+F i
Z(t, St, Zt)γt(Zt)dvt

(i = 1, · · · , K)

dηi
t = Ȳ i

t dt + dβi
t ; i = 1, · · · , N + K

with Ȳ i
t =

{

Si
t , i = 1, · · · , N

Y i−N
t , i = N + 1, · · · , N + K

and the initial distribution of (θ0, L0, Z0, S0, Y i
0)

is characterized by π0(θ0, Z0), L0 = 1 and S0, Y i
0

deterministically given (observed without noise).



4. Filtering for pricing in general factor

models

• Zt : a generic Markovian factor process (some

components of Zt may be unobservable, some

may be observable asset prices)

→ Zt is globally Markov : the evolution of each

component may depend on the entire vector

Z.

• Assume ∃ T > 0 (w.l.of g. the same for all

assets) at which the price of any asset can

be expressed as a known function of Z; i.e.

for each asset ∃ H(·) s.t.

ΠH(T ) = H(T, ZT )

→ for the components of Z that are asset prices

themselves the function H(·) is simply the

projection onto the corresponding component.



• At t 6= T assume

ΠH(t) = FH(t;Zt)

• Assume also the short rate stochastic and a

known function of Zt, i.e.

rt = r(t, Zt)

→ On (Ω,F ,Ft, P ) consider then the model



















dZt = bt(Zt)dt + γt(Zt)dwt

ΠH(t) = FH(t, Zt) with ΠH(T ) = H(T, ZT )
and H(·) a known function

→ To prevent arbitrage, the function F H(t, z)

cannot be arbitrary. What are the conditions

on FH(·) to have absence of arbitrage and,

in particular, so that P itself becomes a mar-

tingale measure ?

Note : for derivative pricing one computes ex-

pectations under a martingale measure; for filter-

ing the dynamics have to be under the real world

measure.



→ Have to impose that the discounted values of

ΠH(t) = FH(t, Zt) are (P,Ft)−martingales

• By Itô’s rule and putting the finite variation

terms equal to zero:































FH
t (t, z) + FH

Z (t, z)bt(z)

+1
2tr[γ′

t(z)F
H
ZZ(t,z)γt(z)]−rt(z)F

H(t,z)=0 , ∀(t,z)

FH(T, z) = H(T, z)

→ For particular families of H(·) this condition

may take on more specific forms (e.g. for ex-

ponentially affine models of the bond market

it becomes a system of ODE’s).

→ By Feynman-Kac also

FH(t, z) = Et,z

{

e−
∫ T
t rs(Zs)dsH(T, ZT )

}



• Let

FO
t = σ

{

ΠHi(s) ; s ≤ t ; i = 1, · · · , K
}

represent the information coming from mar-

ket data.

• Problem. Pricing of illiquid (OTC) deriva-

tives : for a claim Φ(F H(τ, Zτ)) with matu-

rity τ on an underlying with price ΠH(τ) =

FH(τ, Zτ) compute, for t ≤ τ ,

E

{

e−
∫ T
t rs(Zs)dsΦ(FH(τ, Zτ)) | FO

t

}

= E

{

E

{

e−
∫ T
t rs(Zs)dsΦ(FH(τ, Zτ)) | Ft

}

| FO
t

}

= E{Ψ(t, Zt) | F
O
t }

for a suitable ΨH(·).



→ Need the filter distribution

πt(Zt| F
O
t )

for the model






















dZt = bt(Zt)dt + γt(Zt)dwt

dY i
t =rt(Zt)F

Hi(t,Zt)dt+F
Hi
Z

(t,Zt)γt(Zt)dwt

i=1,··· ,K

with

Zt : unobserved (at least some of its components);

Y i
t = ΠHi(t) = FHi(t, Zt) : observed.

→ Again, the observation diffusion term depends

in general on Zt. Introduce therefore a fur-

ther observation noise βt = (β1
t , · · · , βK

t ) con-

sidering also Zt and Y i
t as only partially ob-

served with observations ηi
t satisfying

dηi
t = Y i

t dt + dβi
t ; i = 1, · · · , K

→ In the context of bond markets this approach

has been explicitly implemented in [GR, 2001]

without the need of a further observation

noise and with the use of the Kalman filter.



An alternative approach

• The previous approach was based on the as-

sumption that ΠH(t) = FH(t, Zt) and on the

conditions imposed on F H(·) for P to be a

martingale measure.

• An alternative for having P as a MM is based

on a change of numeraire :

Question : is there a numeraire (portfolio)

for which the real world measure becomes a

MM ?

Answer : Yes ! The GOP (growth optimal

portfolio) which is a self financing portfolio

that achieves maximum expected logarithmic

utility from terminal wealth.



• Pricing with GOP as numeraire : for com-

plete markets the prices coincide with those

computed as expectations w.r.to the unique

MM. In incomplete markets it corresponds to

pricing under the minimal MM.

• In this way the pricing measure and the mea-

sure for filtering are the same and given by

the real world probability measure. It allows,

in particular, to avoid delicate issues resulting

from measure transformation under different

information structures (see [PR, 2003]).


