On two questions by P. J. Larcombe

Informal note by Tom H. Koornwinder, email thk@science.uva.nl

Date: 18 January 2001
In this informal note I answer two questions posed to me by P. J. Larcombe. Sections 1 and 2 give the answers to the two questions, as I mailed them to Larcombe on July 2 and 8,2000 , respectively. I conclude with a short comment in Section 3.

1. The answer to Larcombe's first question (note of July 2, 2000)

In an email of June 20, 2000 P. J. Larcombe conjectured that

$$
\lim _{n \rightarrow \infty}{ }_{3} F_{2}\left[\begin{array}{c}
-n, \frac{1}{2}, \frac{1}{2} \tag{1.1}\\
\frac{1}{2}-n, \frac{1}{2}-n
\end{array} ;-1\right]=2 .
$$

I will give a proof of (1.1). Note that the terms of the (terminating well-poised) ${ }_{3} F_{2}$-series on the left remain invariant under reversion of the direction of summation. Thus we can write

$$
{ }_{3} F_{2}\left[\begin{array}{c}
-n, \frac{1}{2}, \frac{1}{2} \\
\frac{1}{2}-n, \frac{1}{2}-n
\end{array} ;-1\right]=\sum_{k=0}^{\infty} c_{n, k},
$$

where

$$
c_{n, k}= \begin{cases}\frac{2(-n)_{k}\left(\frac{1}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}(-1)^{k}}{\left(\frac{1}{2}-n\right)_{k}\left(\frac{1}{2}-n\right)_{k} k!} & \text { if } k<\frac{1}{2} n \\ \frac{(-n)_{k}\left(\frac{1}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}(-1)^{k}}{\left(\frac{1}{2}-n\right)_{k}\left(\frac{1}{2}-n\right)_{k} k!} & \text { if } k=\frac{1}{2} n \text { (occurs only if } n \text { is even) }, \\ 0 & \text { if } k>\frac{1}{2} n .\end{cases}
$$

Now I will prove (1.1) by dominated convergence. I use that $\lim _{n \rightarrow \infty} c_{n, k}=2$ if $k=0$ and $=0$ otherwise, and that $0 \leq c_{n, k} \leq 4 \cdot\left(\frac{1}{2}\right)^{k}$. The last inequality follows because, for $k \leq \frac{1}{2} n$, we have:

$$
\begin{aligned}
& \frac{(-n)_{k}\left(\frac{1}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}(-1)^{k}}{\left(\frac{1}{2}-n\right)_{k}\left(\frac{1}{2}-n\right)_{k} k!} \\
& =\left(\frac{n}{n-\frac{1}{2}} \frac{n-1}{n-\frac{3}{2}} \cdots \frac{n-k+1}{n-k+\frac{1}{2}}\right)\left(\frac{\frac{1}{2}}{1} \frac{\frac{3}{2}}{2} \ldots \frac{k-\frac{1}{2}}{k}\right)\left(\frac{\frac{1}{2}}{n-k+\frac{1}{2}} \frac{\frac{3}{2}}{n-k+\frac{3}{2}} \ldots \frac{k-\frac{1}{2}}{n-\frac{1}{2}}\right) \\
& \quad \leq \frac{n}{n-k+\frac{1}{2}}\left(\frac{k-\frac{1}{2}}{n-\frac{1}{2}}\right)^{k} \leq 2 \cdot\left(\frac{1}{2}\right)^{k} .
\end{aligned}
$$

2. The answer to Larcombe's second question (note of July 8, 2000)

In an email of July 4, 2000 P. J. Larcombe communicated that

$$
\lim _{n \rightarrow \infty} 2^{n-1}{ }_{3} F_{2}\left[\begin{array}{c}
-n,-\frac{1}{2}(n-1),-\frac{1}{2} n \tag{2.1}\\
\frac{1}{2}-n, \frac{1}{2}-n
\end{array} ; 1\right]=1 .
$$

He asked for an independent proof.
I will show in this note that for nonnegative integer m we have

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
-2 m,-m+\frac{1}{2},-m \\
\frac{1}{2}-2 m, \frac{1}{2}-2 m
\end{array} ; 1\right]=\frac{2^{-2 m+1} \Gamma\left(m+\frac{1}{2}\right)^{4}}{\Gamma\left(m+\frac{1}{4}\right)^{2} \Gamma\left(m+\frac{3}{4}\right)^{2}}{ }_{3} F_{2}\left[\begin{array}{c}
-m, \frac{1}{2}, \frac{1}{2} \\
-m+\frac{1}{2}, m+1
\end{array} ; 1\right], \tag{2.2}\\
& { }_{3} F_{2}\left[\begin{array}{c}
-2 m-1,-m-\frac{1}{2},-m \\
-\frac{1}{2}-2 m,-\frac{1}{2}-2 m
\end{array} ; 1\right]=2^{-2 m} \frac{\left(m+\frac{1}{2}\right) \Gamma\left(m+\frac{1}{2}\right)^{2} \Gamma\left(m+\frac{3}{2}\right)^{2}}{(m+1) \Gamma\left(m+\frac{3}{4}\right)^{2} \Gamma\left(m+\frac{5}{4}\right)^{2}} \\
& \times{ }_{3} F_{2}\left[\begin{array}{c}
-m, \frac{1}{2}, \frac{1}{2} \\
-m+\frac{1}{2}, m+2
\end{array} ; 1\right] . \tag{2.3}
\end{align*}
$$

If we now use that

$$
\lim _{m \rightarrow \infty} m^{b-a} \frac{\Gamma(m+a)}{\Gamma(m+b)}=1
$$

see for instance $[1,(1.4 .3)]$, then (2.1) will follow from (2.2) and (2.3) if we can show that the two ${ }_{3} F_{2}(1)$ expressions on the right-hand side of (2.2) and (2.3) tend to 1 as $m \rightarrow \infty$. This last result can be shown by writing these ${ }_{3} F_{2}(1)$ expressions as $\sum_{k=0}^{\infty} c_{m, k}$ where $c_{m, k}=0$ if $k>m$ and where $c_{m, k}$ for $k \leq m$ is given by

$$
c_{m, k}=\frac{\frac{1}{2} \ldots\left(k-\frac{1}{2}\right)}{\left(m-k+\frac{1}{2}\right) \ldots\left(m-\frac{1}{2}\right)} \frac{(m-k+1) \ldots m}{(m+j+1) \ldots(m+j+k)} \frac{\left(\frac{1}{2}\right)_{k}}{k!} .
$$

Here $j=0$ for (2.2) and $j=1$ for (2.3). So for $k \leq m<2 k$ we have

$$
0 \leq c_{m, k} \leq \frac{(m-k+1) \ldots m}{(m+1) \ldots(m+k)} \leq \frac{k \ldots(2 k-1)}{(2 k) \ldots(3 k-1)} \leq\left(\frac{2}{3}\right)^{k},
$$

and for $m \geq 2 k$ we have

$$
0 \leq c_{m, k} \leq \frac{\frac{1}{2} \ldots\left(k-\frac{1}{2}\right)}{\left(m-k+\frac{1}{2}\right) \ldots\left(m-\frac{1}{2}\right)} \leq \frac{\frac{1}{2} \ldots\left(k-\frac{1}{2}\right)}{\left(k+\frac{1}{2}\right) \ldots\left(2 k-\frac{1}{2}\right)} \leq\left(\frac{1}{2}\right)^{k} .
$$

Hence for all k we have $0 \leq c_{m, k} \leq\left(\frac{2}{3}\right)^{k}$, independently of m. Since $\lim _{m \rightarrow \infty} c_{m, k}=\delta_{k, 0}$, the desired result follows by dominated convergence.

It remains to prove (2.2) and (2.3). For the proof of (2.2) first revert the order of summation on the left-hand side of (2.1) and next apply the transformation formula

$$
{ }_{3} F_{2}\left[\begin{array}{c}
a, b, c \tag{2.4}\\
d, e
\end{array} ; 1\right]=\frac{\Gamma(e) \Gamma(d+e-a-b-c)}{\Gamma(e-a) \Gamma(d+e-b-c)}{ }_{3} F_{2}\left[\begin{array}{c}
a, d-b, d-c \\
d, d+e-b-c
\end{array}\right]
$$

(see for instance [1, Corollary 3.3.5]), and use the duplication formula $\Gamma(2 z) \Gamma\left(\frac{1}{2}\right)=$ $2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)$ (see for instance [1, (1.5.1)]). This yields the identities

$$
\left.\begin{array}{l}
{ }_{3} F_{2}\left[\begin{array}{c}
-2 m,-m+\frac{1}{2},-m \\
\frac{1}{2}-2 m, \frac{1}{2}-2 m
\end{array} ; 1\right.
\end{array}\right] \quad \begin{aligned}
& \left(\left(m+\frac{1}{2}\right)_{m}\right)^{2} \\
& =\frac{(-1)^{m}(m+1)_{m}\left(\frac{1}{2}\right)_{m}}{{ }_{3} F_{2}\left[\begin{array}{c}
-m, m+\frac{1}{2}, m+\frac{1}{2} \\
m+1, \frac{1}{2}
\end{array}\right]} \begin{array}{l}
=\frac{(m+1)_{m}\left(\frac{1}{2}\right)_{m}}{\left(\left(m+\frac{1}{2}\right)_{m}\right)^{2}}{ }_{3} F_{2}\left[\begin{array}{c}
-m, \frac{1}{2}, \frac{1}{2} \\
-m+\frac{1}{2}, m+1
\end{array}\right] \\
=\frac{2^{-2 m+1} \Gamma\left(m+\frac{1}{2}\right)^{4}}{\Gamma\left(m+\frac{1}{4}\right)^{2} \Gamma\left(m+\frac{3}{4}\right)^{2}}{ }_{3} F_{2}\left[\begin{array}{c}
-m, \frac{1}{2}, \frac{1}{2} \\
-m+\frac{1}{2}, m+1
\end{array} ; 1\right] .
\end{array} .
\end{aligned}
$$

For the derivation of (2.3) we have a similar string of identities:

$$
\begin{aligned}
& { }_{3} F_{2}\left[\begin{array}{c}
-2 m-1,-m-\frac{1}{2},-m \\
-\frac{1}{2}-2 m,-\frac{1}{2}-2 m
\end{array} ; 1\right] \\
& =\frac{(-1)^{m}(m+2)_{m}\left(\frac{3}{2}\right)_{m}}{\left(\left(m+\frac{3}{2}\right)_{m}\right)^{2}}{ }_{3} F_{2}\left[\begin{array}{c}
-m, m+\frac{3}{2}, m+\frac{3}{2} \\
m+2, \frac{3}{2}
\end{array} ; 1\right] \\
& =\frac{(m+2)_{m}\left(\frac{3}{2}\right)_{m}}{\left(\left(m+\frac{3}{2}\right)_{m}\right)^{2}}{ }_{3} F_{2}\left[\begin{array}{c}
-m, \frac{1}{2}, \frac{1}{2} \\
-m+\frac{1}{2}, m+2
\end{array} ; 1\right] \\
& =2^{-2 m} \frac{\left(m+\frac{1}{2}\right) \Gamma\left(m+\frac{1}{2}\right)^{2} \Gamma\left(m+\frac{3}{2}\right)^{2}}{(m+1) \Gamma\left(m+\frac{3}{4}\right)^{2} \Gamma\left(m+\frac{5}{4}\right)^{2}}{ }_{3} F_{2}\left[\begin{array}{c}
-m, \frac{1}{2}, \frac{1}{2} \\
-m+\frac{1}{2}, m+2
\end{array} ; 1\right] .
\end{aligned}
$$

3. Concluding remarks

Formulas (1.1) and (2.1) were earlier obtained in a quite different way by Larcombe et al. in [2]. It was pointed out by Larcombe and French in [3] that the two results are related by the identity

$$
2^{n}{ }_{3} F_{2}\left[\begin{array}{c}
-\frac{1}{2} n,-n,-\frac{1}{2}(n-1) \tag{3.1}\\
\frac{1}{2}-n, \frac{1}{2}-n
\end{array}, 1\right]={ }_{3} F_{2}\left[\begin{array}{c}
-n, \frac{1}{2}, \frac{1}{2} \\
\frac{1}{2}-n, \frac{1}{2}-n
\end{array},-1\right],
$$

which is a special case of an identity of Whipple (see formula (7.3) in [5] and formula (9.5) in [4]).

Larcombe and French are preparing a paper, where the above sketchy proofs will be given in more detail and where a precise reference will be given for the dominated convergence theorem in the context of infinite series (equivalent to Tannery's theorem).

References

[1] G. E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, 1999.
[2] P. J. Larcombe, D. R. French and E. J. Fennessey, A note on the asymptotic behaviour of the Catalan-Larcombe-French sequence $\{1,8,80,896,10816, \ldots\}$, submitted, 2000.
[3] P. J. Larcombe and D. R. French, On the 'other' Catalan numbers: a historical formulation re-examined, Cong. Num., to appear.
[4] F. J. W. Whipple, On well-poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum, Proc. London Math. Soc. (2) 24 (1925), 247-263.
[5] F. J. W. Whipple, Some translations of generalized hypergeometric series, Proc. London Math. Soc. (2) 26 (1927), 257-272.

