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In this informal note I answer two questions posed to me by P. J. Larcombe. Sections 1
and 2 give the answers to the two questions, as I mailed them to Larcombe on July 2 and
8, 2000, respectively. I conclude with a short comment in Section 3.

1. The answer to Larcombe’s first question (note of July 2, 2000)

In an email of June 20, 2000 P. J. Larcombe conjectured that
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I will give a proof of (1.1). Note that the terms of the (terminating well-poised) 3F2-series
on the left remain invariant under reversion of the direction of summation. Thus we can
write
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Now I will prove (1.1) by dominated convergence. I use that limn→∞ cn,k = 2 if k = 0
and = 0 otherwise, and that 0 ≤ cn,k ≤ 4 · ( 1

2
)k. The last inequality follows because, for
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2. The answer to Larcombe’s second question (note of July 8, 2000)

In an email of July 4, 2000 P. J. Larcombe communicated that
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He asked for an independent proof.
I will show in this note that for nonnegative integer m we have
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If we now use that

lim
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see for instance [1, (1.4.3)], then (2.1) will follow from (2.2) and (2.3) if we can show that
the two 3F2(1) expressions on the right-hand side of (2.2) and (2.3) tend to 1 as m → ∞.
This last result can be shown by writing these 3F2(1) expressions as
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Here j = 0 for (2.2) and j = 1 for (2.3). So for k ≤ m < 2k we have

0 ≤ cm,k ≤
(m − k + 1) . . .m

(m + 1) . . . (m + k)
≤

k . . . (2k − 1)

(2k) . . . (3k − 1)
≤ ( 2

3
)k,

and for m ≥ 2k we have

0 ≤ cm,k ≤
1

2
. . . (k − 1

2
)

(m − k + 1

2
) . . . (m − 1

2
)
≤

1

2
. . . (k − 1

2
)

(k + 1

2
) . . . (2k − 1

2
)
≤ ( 1

2
)k.

Hence for all k we have 0 ≤ cm,k ≤ ( 2

3
)k, independently of m. Since limm→∞ cm,k = δk,0,

the desired result follows by dominated convergence.
It remains to prove (2.2) and (2.3). For the proof of (2.2) first revert the order of

summation on the left-hand side of (2.1) and next apply the transformation formula
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(see for instance [1, Corollary 3.3.5]), and use the duplication formula Γ(2z) Γ( 1

2
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For the derivation of (2.3) we have a similar string of identities:
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3. Concluding remarks

Formulas (1.1) and (2.1) were earlier obtained in a quite different way by Larcombe et al.

in [2]. It was pointed out by Larcombe and French in [3] that the two results are related
by the identity
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which is a special case of an identity of Whipple (see formula (7.3) in [5] and formula (9.5)
in [4]).

Larcombe and French are preparing a paper, where the above sketchy proofs will
be given in more detail and where a precise reference will be given for the dominated
convergence theorem in the context of infinite series (equivalent to Tannery’s theorem).
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