O P - S F NET-Volume 18, Number 6 - November 15, 2011

Editors:
Diego Dominic
Martin Muldoon
dominicd@newpaltz.edu
muldoon@yorku.ca
The Electronic News Net of the
SIAM Activity Group on Orthogonal Polynomials and Special Functions
http://math.nist.gov/opsf/
Please send contributions to: poly@siam.org
Subscribe by mailing to: poly-request@siam.org
or to: listproc@nist.gov

Today's Topics

1. Santander Workshop on Numerical Software
2. Henrik De Bie awarded first Clifford Prize
3. Additions to formulas in Koekoek-Lesky-Swarttouw
4. Call for Papers: LAA Special Issue on Matrix Functions
5. Special issues of Journal of Approximation Theory
6. Review of Barry Simon's "Szegö's Theorem ..."
7. Preprints in arXiv.org
8. About the Activity Group
9. Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)

Calendar of Events:

December 4-6, 2011
National Conference on Ramanujan's Work in the Field of Hypergeometric Series and its Applications, Jaunpur, India http://www.ams.org/meetings/calendar/2011_dec4-6_jaunpur.html

December 12-16, 2011

ICREA Conference on Approximation Theory and Fourier Analysis, Barcelona, Spain
http://www.crm.cat/icreaapproximation/
February 20-24, 2012
Conference on Superintegrability, Exact Solvability, and Special Functions, Centro Internacional de Ciencias A.C., Cuernavaca, Mexico, 20-24 February 2012.
http://www.cicc.unam.mx/activities/2012/superinte.html

May 17-19, 2012
International Conference on Applied Mathematics and Approximation Theory - AMAT 2012, Ankara, Turkey (Celebrating the $60^{\text {th }}$ birthday of Professor George A.
Anastassiou)
http://amat2012.etu.edu.tr/
May 29 - June 1, 2012
Hypergeometric series and their generalizations in algebra, geometry, number theory and physics, Paris, France.
http://www.liafa.jussieu.fr/~lovejoy/hypergeometric.html
June 11-15, 2012
International Symposium on Orthogonal Polynomials and Special Functions a Complex Analytic Perspective, Copenhagen, Denmark
18.4 \#2
http://www.matdat.life.ku.dk/~henrikp/osca2012/
June 25-29, 2012
AIM Workshop: Hypergeometric Motives, International Centre for Theoretical Physics, Trieste, Italy
http://aimath.org/ARCC/workshops/hypermotives.html
June 28 - July 3, 2012
Eighth International Conference on Mathematical Methods for Curves and Surfaces, Oslo, Norway
www.ifi.uio.no/~cagd/2012
July 4-6, 2012
Workshop "Numerical Software: Design, Analysis and Verification" Santander, Spain 18.6 \#1
http://personales.unican.es/segurajj/numsoft 12
July 9-13, 2012
SIAM Annual Meeting, Minneapolis, Minnesota, USA
http://www.siam.org/meetings/an12/

September 3-7, 2012

International Conference on Differential Equations, Difference Equations and Special Functions in memory of Professor Panayiotis D. Siafarikas, Patras, Greece.
http://www.icddesf.upatras.gr/
July 8-12, 2013
SIAM Annual Meeting, San Diego, California, USA (including OPSF "track")
http://www.siam.org/meetings/an13/
18.5 \#3

Topic \#1 ---------- OP-SF NET 18.6 ---------- November 15, 2011

From: Javier Segura javier.segura@unican.es
Subject: Santander Workshop on Numerical Software
The workshop "Numerical Software: Design, Analysis and Verification" will take place in Santander (Spain) from Wednesday, July 4 until Friday, July 62012.

This workshop, organized by A. Gil, J. Segura and N.M. Temme, aims to review and discuss recent advances and research trends in the design, analysis and verification of numerical software for a variety of mathematical problems.

The workshop is organized in close association with 2012 meeting of the IFIP working group on numerical software (http://www.nsc.liu.se/wg25), that will be held in Santander (2-3 July).

The program consists of invited and contributed talks.
Confirmed Speakers are:

* Annie Cuyt (U. Antwerp, Belgium)
* Daniel W. Lozier (NIST, USA)
* Jean-Michel Müller (ENS Lyon, France)
* Nathalie Revol (ENS Lyon, France)
* William Van Snyder (Jet Propulsion Laboratory, USA)

Submission Deadlines:
February 1, 2012: Contributed session proposals
April 1, 2012: Abstracts for contributed talks and posters
For further details, please visit
http://personales.unican.es/segurajj/numsoft 12

Topic \#2 ---------- OP-SF NET 18.6 ---------- November 15, 2011

From: Tom Koornwinder T.H.Koornwinder@uva.nl
Subject: Henrik De Bie awarded first Clifford Prize
Hendrik De Bie of Ghent University has been selected as the recipient of the first Clifford Prize for his outstanding mathematical research achievements in the fields of harmonic and Clifford analysis with applications in theoretical physics.

More information is given by Eckhard Hitzer in the Mathematics People section in Notices Amer. Math. Soc., October 2011, p 1299:
(http://www.ams.org/notices/201109/.
Hendrik De Bie's home page is at http://cage.ugent.be/~hdebie/.

From: Tom Koornwinder T.H.Koornwinder@uva.nl
Subject: Additions to formulas in Koekoek-Lesky-Swarttouw
I am a frequent user of Chapters 9 and 14 in the book R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, 2010 (Springer also offers the book electronically in pdf).
These chapters together form the (slightly extended) successor of the report R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/.

These chapters focus on a limited but fundamental collection of formulas (like (q-)hypergeometric expressions, orthogonality relations, second order differential or (q-)difference eigenvalue equation) which are given for each family of orthogonal polynomials in the (q-)Askey scheme. Of course, the user will occasionally need other formulas for these OP's which are not included in these chapters. For some time I have formed the habit of collecting such formulas in a file and adding a reference or sketching a short proof for the formula. Of course, the resulting collection is quite arbitrary. Still I have now made my present collection public on my homepage, see http://staff.science.uva.nl/~thk/art/informal/ It is my intention to extend it gradually.

In this connection see also Dmitry Karp's discussion item "Searchable wiki-style knowledge base of formulas for special functions" in OP-SF NET 18.4, Topic \#5. My informal paper may be a tiny contribution to what Dmitry proposes, although it does not meet most of his requirements.

Topic \#4 ----------- OP-SF NET 18.6 ---------- November 15, 2011

From: Leiba Rodman lxrodm@math.wm.edu Subject: LAA Special Issue on Matrix Functions

LINEAR ALGEBRA AND ITS APPLICATIONS
CALL FOR PAPERS
Special Issue on Matrix Functions

Matrix functions can be broadly defined as matrices understood as changing quantities rather than given and constant. As such, the study of matrix functions encompasses a large part of linear algebra and its applications. The need for matrix functions is apparent in many applications in mathematics, sciences, and engineering, for instance systems of _rst order linear differential equations with constant coefficients, and (mechanical or electrical) vibrating systems.

LAA has previously published a special issue devoted to the field of matrix functions; see Vol. 137-138, 1990 (J. A. Ball, L. Rodman, P. Van Dooren, editors). Because the last years witnessed a strong increase of research interest in the area of matrix functions we feel that it is time to reflect again on the field. This special issue is devoted to theoretical studies and applications of matrix functions on all their aspects. Its goals are to highlight recent advances and developments, outstanding open problems, and applications of matrix functions, on the many facets, techniques, and results of this field. It will be open to all papers with significant new results where matrix functions play an important role and problems of linear algebraic nature are presented. Survey papers that illustrate several interconnected aspects of the theme of matrix functions and their applications are highly encouraged, as are research problems articles.

Areas and topics of interest for this special issue include, but are not limited to:

- Methods and theory for

Matrix polynomials
Rational matrix functions
Analytic and meromorphic matrix functions Matrix exponential, logarithm, square root, and others
Functions of structured matrices
Functions of large and sparse matrices
Functions of matrices times a vector
Conditioning and perturbation
Interpolation

- Applications in

Linear dynamical systems and ODE solvers
Operator theory
Singular systems
Canonical systems of differential equations
Integral equations
Network analysis
Control theory
Model reduction
Domain decomposition
Mathematical physics
The deadline for submission of papers is July 31, 2012, and the special issue is expected to be published in 2013. Papers should be submitted to the responsible editor-in-chief V. Mehrmann, choosing the special issue "Matrix Functions", through the electronic submission system of LAA at
http://ees.elsevier.com/laa .
They must meet the publication standards of LAA and will be refereed in the usual way. The editors for this special issue of LAA are:

Oliver Ernst
Fakultät für Mathematik und Informatik TU Bergakademie Freiberg

09596 Freiberg, Germany
ernst@math.tu-freiberg.de

Chun-Hua Guo
Department of Mathematics and Statistics
University of Regina
Regina, SK S4S 0A2, Canada
Chun-Hua.Guo@uregina.ca
Jörg Liesen
Institut für Mathematik, MA 4-5
TU Berlin
10623 Berlin, Germany
liesen@math.tu-berlin.de
Leiba Rodman
Department of Mathematics
College of William and Mary
Williamsburg, VA 23187-8795, USA
Ixrodm@math.wm.edu

The responsible editor-in-chief for the special issue is Volker Mehrmann (mehrmann@math.tu-berlin.de).

Topic \#5 ----------- OP-SF NET 18.6 ---------- November 15, 2011

From: OP-SF NET Editors
Subject: Special issues of Journal of Approximation Theory
The June 2011 issue (vol 163, no 6) of Journal of Approximation Theory features an article "In memoriam Franz Peherstorfer, July 26, 1959 - November 27, 2009", by András Kroó, Paul Nevai and Vilmos Totik at pages 689-706. The article includes reminiscences from Clemens Inninger, Paco Marcellán, Ionela Moale, Klaus Schiefermayr, Barry Simon, Christoph Stroh and Peter Yuditskii as well as from the authors. The issue also includes two articles "Explicit min-max polynomials on the disc" and "An explicit class of min-max polynomials on the ball and on the sphere" by Ionela Moale and Franz Peherstorfer as well as the following articles dedicated to the memory of Franz Peherstorfer:

Vilmos Totik, The norm of minimal polynomials on several intervals;
Andrei Martínez-Finkelshtein and Barry Simon, Asymptotics of the L2 norm of derivatives of OPUC;
U. Fidalgo Prieto and G. López Lagomasino, Nikishin systems are perfect. The case of unbounded and touching supports.

The July 2011 issue (vol 163, no 7), begins with a brief account by Walter Van Assche of the international conference on Orthogonal Polynomials, Special Functions and Applications held at the Katholieke Universiteit Leuven in Belgium during the week of 20-25 July, 2009. "... There were 151 participants from 30 countries for this edition: Spain, with 28 people, had the largest number of participants, followed by the host country Belgium (23 participants) and the United States (19 participants). The program included 13 plenary speakers and 12 parallel sessions with about 80 communications. This special issue contains papers that were presented at the conference and which are within the scope of approximation theory; they were all handled and refereed according to JAT's strict standards. One particularly interesting paper is by Franz Peherstorfer. Little did we realizethat it was Franz' last participation at an international conference. ..." The articles are:
F. Peherstorfer, Orthogonal polynomials on several intervals: Accumulation points of recurrence coefficients and of zeros

Wolter Groenevelt and Erik Koelink, The indeterminate moment problem for the qMeixner polynomials

Andreas Lasarow, More on a class of extremal solutions of a moment problem for rational matrix-valued functions in the nondegenerate case

Ana F. Loureiro and P. Maroni, Quadratic decomposition of Laguerre polynomials via lowering operators
D.S. Lubinsky, Universality in the bulk holds close to given points

Topic \#6 ----------- OP-SF NET 18.6 ---------- November 15, 2011

From: Diego Dominici dominicd@newpaltz.edu Subject: Review of Barry Simon's "Szegö's Theorem ..."

Szego's Theorem and Its Descendants: Spectral Theory for L² Perturbations of Orthogonal Polynomials Barry Simon
Cloth | 2010 | \$110.00/£75.00 | ISBN: 9780691147048
720 pp.| $6 \times 9 \mid 8$ line illus.
eBook | 2010 | $\$ 110.00$ |ISBN: 9781400837052
Princeton University Press, 2010: further information at
http://press.princeton.edu/titles/9377.html
See also the author's web site:
http://www.math.caltech.edu/Szego.html

Review of Barry Simon's

Szegö's Theorem and Its Descendants: Spectral Theory for L^{2} Perturbations of Orthogonal Polynomials

This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szegő's classic 1915 theorem and its 1920 extension.

Let $d \mu$ be a measure supported on the unit circle $\partial \mathbb{D}$, given by

$$
d \mu(\theta)=w(\theta) \frac{d \theta}{2 \pi}+d \mu_{s}
$$

If $d \mu_{s}=0$, we define

$$
c_{k}=\int_{\partial \mathbb{D}} e^{-i k \theta} w(\theta) \frac{d \theta}{2 \pi}
$$

and

$$
D_{n}=\operatorname{det}\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n} \\
c_{-1} & c_{0} & \cdots & c_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{-n} & c_{-n+1} & \cdots & c_{0}
\end{array}\right]
$$

Szegő's Theorem states that if $w(\theta) \geq 0$ and

$$
\int_{\partial \mathbb{D}} w(\theta) \frac{d \theta}{2 \pi}<\infty
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{D_{n+1}}{D_{n}}=\exp \int_{\partial \mathbb{D}} \log [w(\theta)] \frac{d \theta}{2 \pi} \tag{1}
\end{equation*}
$$

We define the monic orthogonal polynomials on the unit circle (OPUC) $\Phi_{n}(z)$ by

$$
\int_{\partial \mathbb{D}} \bar{z}^{k} \Phi_{n}(z) d \mu(z)=0, \quad k=0,1, \ldots, n-1
$$

where we now allow $d \mu_{s} \neq 0$. Verblunky's form of Szegő's Theorem is

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(1-\left|\alpha_{n}\right|^{2}\right)=\exp \int_{\partial \mathbb{D}} \log [w(\theta)] \frac{d \theta}{2 \pi} \tag{2}
\end{equation*}
$$

where $\alpha_{n}=-\overline{\Phi_{n+1}(0)}$.
The book is organized as follows. Chapter 1 contains some results on Spectral Theory and the statements of Szegő's Theorem (1) and (2). Chapter 2 is devoted to the proof of (2) and some extensions, all in the context of OPUC.

Chapter 3 formulates and proves the analogs of Szegő's Theorem for orthogonal polynomials on the real line (OPRL), including the Killip-Simon Theorem for Jacobi matrices. Chapter 4 presents the theory of matrix-valued orthogonal polynomials on the real line (MOPRL) and a matrix analog of the Killip-Simon Theorem.

Chapter 5 is a wealth of information on OPUC and OPRL with periodic coefficients. The proofs of the analog of Szegő's and the Killip-Simon Theorem for OPUC and OPRL with periodic coefficients is in Chapter 8, after some discussion on Toda Flows (Chapter 6) and Right Limits (Chapter 7).

Chapter 9 is dedicated to OPUC and OPRL whose measures are supported on finite gap sets of the form

$$
\bigcup_{k=1}^{l+1}\left[a_{j}, b_{j}\right], \quad a_{1}<b_{1}<a_{2}<\cdots<b_{l+1}
$$

Most of the material in this chapter has been published only in the last few years, or is still in press. Finally, Chapter 10 discusses some work on Bethe-Cayley Trees.

All this formidable material is presented in a very precise and elegant way, accessible to the non-specialist. The Remarks spread through the book and the Remarks and Historical Notes at the end of each section (!) allow the reader a deeper understanding of the topic discussed and its development.

There is no doubt that this book is a must have in the library of any researcher working in areas related to the theory of Orthogonal Polynomials.

Diego Dominici

Topic \#7 ----------- OP-SF NET 18.6 ---------- November 15, 2011

From: OP-SF NET Editors
Subject: Preprints in arXiv.org
The following preprints related to the fields of orthogonal polynomials and special functions were posted or cross-listed to one of the subcategories of arXiv.org mostly during September and October 2011.
http://arxiv.org/abs/1 109.0332
Pade approximants for functions with branch points - strong asymptotics of Nuttall-
Stahl polynomials
Alexander I. Aptekarev, Maxim L. Yattselev
http://arxiv.org/abs/1 109.0485
Limit relations between $\$ q \$$-Krall type orthogonal polynomials
R. Álvarez-Nodarse, R. S. Costas-Santos
http://arxiv.org/abs/1109.1169
Bézier representation of the constrained dual Bernstein polynomials
Stanisław Lewanowicz, Paweł Woźny
http://arxiv.org/abs/1109.1387
Explicit formula for generalization of Poly-Bernoulli numbers and polynomials with
a,b,c parameters
Hassan Jolany
http://arxiv.org/abs/1109.2193
From double quantum Schubert polynomials to k-double Schur functions via the
Toda lattice
Thomas Lam, Mark Shimozono
http://arxiv.org/abs/1109.2316
On common roots of random Bernoulli polynomials
Gady Kozma, Ofer Zeitouni
http://arxiv.org/abs/1109.2339
How to recognize polynomials in higher order Sobolev spaces
Bogdan Bojarski, Lizaveta Ihnatsyeva, Juha Kinnunen
http://arxiv.org/abs/1 109.4660
An explicit formula for the linearization coefficients of Bessel polynomials
Mohamed Jalel Atia, Jiang Zeng
http://arxiv.org/abs/1110.0580
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
Abdallah Ghressi, Lotfi Khériji, Mohamed Ihsen Tounsi
http://arxiv.org/abs/1110.1484
Bernoulli type polynomials on Umbral Algebra
Rahime Dere, Yilmaz Simsek
http://arxiv.org/abs/1110.1554
Orthogonal Polynomials on the Sierpinski Gasket
Kasso A. Okoudjou, Robert S. Strichartz, Elizabeth K. Tuley
http://arxiv.org/abs/1110.1902
d-Orthogonal polynomials and su(2)
Vincent X. Genest, Luc Vinet, Alexei Zhedanov
http://arxiv.org/abs/1110.2025
Polynomials Associated with the Higher Derivatives of the Airy Functions Ai(z) and $A^{\prime}(z)$
Bernard J. Laurenzi
http://arxiv.org/abs/1110.2047
Unification of the three families of generalized Apostol type polynomials on the
Umbral algebra
Rahime Dere, Yilmaz Simsek
http://arxiv.org/abs/1110.2187
Extended Joseph polynomials, quantized conformal blocks, and a q-Selberg type integral
R. Rimányi, V. Tarasov, A. Varchenko, P. Zinn-Justin
http://arxiv.org/abs/1110.2369
A generalization of the Zernike circle polynomials for forward and inverse problems in diffraction theory
Augustus Janssen
http://arxiv.org/abs/1110.2839
Uniform Asymptotic Expansions for the Discrete Chebyshev Polynomials
J.H. Pan, R. Wong
http://arxiv.org/abs/1110.3958
Rationally-extended radial oscillators and Laguerre exceptional orthogonal polynomials in kth-order SUSYQM
C. Quesne
http://arxiv.org/abs/1110.5308
Congruences concerning Jacobi polynomials
Khodabakhsh Hessami Pilehrood, Tatiana Hessami Pilehrood
http://arxiv.org/abs/1110.6475
Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer
Luc Vinet, Alexei Zhedanov
http://arxiv.org/abs/1110.6477
Dual -1 Hahn polynomials and perfect state transfer
Luc Vinet, Alexei Zhedanov
http://arxiv.org/abs/1110.6620
On the characteristic polynomial of Cartan matrices and Chebyshev polynomials Pantelis A. Damianou
http://arxiv.org/abs/1110.3740
Gauge Theories and Macdonald Polynomials
Abhijit Gadde, Leonardo Rastelli, Shlomo S. Razamat, Wenbin Yan
http://arxiv.org/abs/1110.5406
Integrals Involving Associated Laguerre Polynomials
Muthiah Annamalai, Michael Vasilyev
http://arxiv.org/abs/1109.2409
General moments of matrix elements from circular orthogonal ensembles Sho Matsumoto
http://arxiv.org/abs/1110.1456
Limits of elliptic hypergeometric biorthogonal functions
Fokko J. van de Bult, Eric M. Rains
http://arxiv.org/abs/1110.1458
Limits of multivariate elliptic hypergeometric biorthogonal functions
Fokko J. van de Bult, Eric M. Rains
http://arxiv.org/abs/1110.1460
Limits of multivariate elliptic beta integrals and related bilinear forms
Fokko J. van de Bult, Eric M. Rains
http://arxiv.org/abs/1109.0613
The c-function expansion of a basic hypergeometric function associated to root systems
Jasper V. Stokman
http://arxiv.org/abs/1109.1123
Two multivariate quadratic transformations of elliptic hypergeometric integrals Fokko Joppe van de Bult
http://arxiv.org/abs/1109.1645
Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations
Hajime Nagoya
http://arxiv.org/abs/1109.3362
Traces of Hecke operators in level 1 and Gaussian hypergeometric functions
Jenny G. Fuselier
http://arxiv.org/abs/1109.4659
Selberg Integrals, Super hypergeometric functions and Applications to $\$ \beta \$$ -
Ensembles of Random Matrices
Patrick Desrosiers, Dang-Zheng Liu
http://arxiv.org/abs/1109.6560
Partial theta functions and mock modular forms as q-hypergeometric series Kathrin Bringmann, Amanda Folsom, Robert C. Rhoades
http://arxiv.org/abs/1110.6619
Landen inequalities for zero-balanced hypergeometric functions
Slavko Simić, Matti Vuorinen
http://arxiv.org/abs/1110.6759
\$ π \$-formulae implied by two hypergeometric series identities
Chuan Wei, Dianxuan Gong, Jianbo Li
http://arxiv.org/abs/1110.0210
The Epsilon Expansion of Feynman Diagrams via Hypergeometric Functions and Differential Reduction
S.A. Yost, V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, B.F.L. Ward
http://arxiv.org/abs/1110.0703
Hypergeometric solutions of the closed eigenvalue problem on Heisenberg Isoperimetric Profiles
Francescopaolo Montefalcone
http://arxiv.org/abs/1110.1456
Limits of elliptic hypergeometric biorthogonal functions
Fokko J. van de Bult, Eric M. Rains
http://arxiv.org/abs/1110.1458
Limits of multivariate elliptic hypergeometric biorthogonal functions
Fokko J. van de Bult, Eric M. Rains
http://arxiv.org/abs/1110.4699
Turán type inequalities for Tricomi confluent hypergeometric functions
Árpád Baricz, Mourad E.H. Ismail
http://arxiv.org/abs/1109.3674
Algebrability, non-linear properties, and special functions
Artur Bartoszewicz, Szymon Glab, Daniel Pellegrino, Juan B. Seoane-Sepúlveda
http://arxiv.org/abs/1109.5957
Generalizing Ramanujan's J Functions
Jerome Malenfant
http://arxiv.org/abs/1109.1753
Factoring derivatives of functions in the Nevanlinna and Smirnov classes Konstantin M. Dyakonov
http://arxiv.org/abs/1109.1772
Zeros of analytic functions, with or without multiplicities
Konstantin M. Dyakonov
http://arxiv.org/abs/1 109.3408
Exponential decay of Laplacian eigenfunctions in domains with branches
Andrey Delitsyn, Binh-Thanh Nguyen, Denis S. Grebenkov
http://arxiv.org/abs/1109.3486
Confluent Heun functions in gauge theories on thick braneworlds
M. S. Cunha, H. R. Christiansen
http://arxiv.org/abs/1110.0655
Direct Systems of Spherical Functions and Representations
Matthew Dawson, Gestur Olafsson, Joseph A. Wolf
http://arxiv.org/abs/1110.5121
On Schrödinger equation with potential $U=-\alpha r \wedge\{-1\}+\beta r+k r \wedge\{2\}$ and the biconfluent Heun functions theory
E. Ovsiyuk, M. Amirfachrian, O. Veko
http://arxiv.org/abs/1110.6147
An Analytical Evaluation For The Integral Of Two Spherical Bessel Functions With An Additional Exponential And Polynomial Factor
R. Mehrem
http://arxiv.org/abs/1110.6310
Integrals of Bessel functions
D. Babusci, G. Dattoli, B. Germano, M. R. Martinelli, P. E. Ricci
http://arxiv.org/abs/1110.6356
Cylindric Macdonald functions and a deformation of the Verlinde algebra
Christian Korff
http://arxiv.org/abs/1110.6508
The Application of Weierstrass elliptic functions to Schwarzschild Null Geodesics
G. W. Gibbons, M. Vyska
http://arxiv.org/abs/1109.2224
Negative values of the Riemann zeta function on the critical line Justas Kalpokas, Maxim A. Korolev, Jörn Steuding
http://arxiv.org/abs/1109.3855
Large gaps between consecutive maxima of the Riemann zeta-function on the critical line
S. H. Saker, J. Steuding
http://arxiv.org/abs/1 109.6335
Evaluation of Riemann Zeta function on the Line $\$ \backslash \operatorname{Re}(s)=1 \$$ and Odd Arguments Srinivasan Arunachalam
http://arxiv.org/abs/1109.6790
Riemann's Zeta Function. Numerical Evaluation via its Alternating Relative $\eta(s)$ Renaat Van Malderen
http://arxiv.org/abs/1109.0658
Fractional Euler-Lagrange differential equations via Caputo derivatives Ricardo Almeida, Agnieszka B. Malinowska, Delfim F. M. Torres

Topic \#8 ---------- OP-SF NET 18.6 ---------- November 15, 2011

From: OP-SF NET Editors
Subject: About the Activity Group
The SIAM Activity Group on Orthogonal Polynomials and Special Functions consists of a broad set of mathematicians, both pure and applied. The Group also includes engineers and scientists, students as well as experts. We have around 130 members scattered about in more than 20 countries. Whatever your specialty might be, we welcome your participation in this classical, and yet modern, topic. Our WWW home page is:
http://math.nist.gov/opsf/
This is a convenient point of entry to all the services provided by the Group. Our Webmaster is Bonita Saunders (bonita.saunders@nist.gov).

The Activity Group sponsors OP-SF NET, an electronic newsletter, and SIAM-OPSF (OP-SF Talk), a listserv, as a free public service; membership in SIAM is not required. OP-SF NET is transmitted periodically through a post to OP-SF Talk. The OP-SF Net Editors are Diego Dominici (dominicd@newpaltz.edu) and Martin Muldoon (muldoon@yorku.ca).

Back issues of OP-SF NET can be obtained at the WWW addresses:
http://staff.science.uva.nl/~thk/opsfnet
http://math.nist.gov/~DLozier/OPSFnet/
SIAM-OPSF (OP-SF Talk), which was recently moved to a SIAM server, facilitates communication among members and friends of the Activity Group. To see the archive of all messages, go to http://lists.siam.org/mailman/listinfo/siam-OPSF. To contribute an item to the discussion, send email to siam-opsf@siam.org. The moderators are Bonita Saunders (bonita.saunders@nist.gov) and Diego Dominici (dominicd@newpaltz.edu).

SIAM has several categories of membership, including low-cost categories for students and residents of developing countries. In addition, there is the possibility of reduced rate membership for the members of several societies with which SIAM has a reciprocity agreement; see http://www.siam.org/membership/individual/reciprocal.php
For current information on SIAM and Activity Group membership, contact:
Society for Industrial and Applied Mathematics
3600 University City Science Center
Philadelphia, PA 19104-2688 USA
phone: +1-215-382-9800
email: service@siam.org
WWW : http://www.siam.org
http://www.siam.org/membership/outreachmem.htm

Topic \#9 ---------- OP-SF NET 18.6 ---------- November 15, 2011

From: OP-SF NET Editors
Subject: Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)
To contribute a news item to OP-SF NET, send email to one of the OP-SF Editors dominicd@newpaltz.edu or muldoon@yorku.ca.
Contributions to OP-SF NET 19.1 should be sent by January 1, 2012.
OP-SF NET is an electronic newsletter of the SIAM Activity Group on Special Functions and Orthogonal Polynomials. We disseminate your contributions on anything of interest to the special functions and orthogonal polynomials community. This includes announcements of conferences, forthcoming books, new software, electronic archives, research questions, and job openings. OP-SF NET is transmitted periodically through a post to SIAM-OPSF (OP-SF Talk).

SIAM-OPSF (OP-SF Talk) is a listserv of the SIAM Activity Group on Special Functions and Orthogonal Polynomials, which facilitates communication among members, and friends of the Activity Group. See the previous Topic. To post an item to the listserv, send email to siam-opsf@siam.org.

WWW home page of this Activity Group:
http://math.nist.gov/opsf/
Information on joining SIAM and this activity group: service@siam.org
The elected Officers of the Activity Group (2011-2013) are:
Chair: Francisco Marcellán
Vice Chair: Jeff Geronimo
Program Director: Diego Dominici
Secretary: Peter Clarkson
The appointed officers are:
Diego Dominici, OP-SF NET co-editor and OP-SF Talk moderator Martin Muldoon, OP-SF NET co-editor
Bonita Saunders, Webmaster and OP-SF Talk moderator

