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at the constant pressures of 100, 102, and 104 volts respec-
tively consistad of specially good specimens. e

In applying the rule that the economical potential differ-
ence is :llh(’.lul the one which causes tho lnm]n 1o |\l‘H(lﬂACl‘ 029
candle per watl, it isimportant, however, to examine 8-candle
100-volt Edison-Swan lamps whon bought to see whether
they are really marked “ 100 B.F. 8. For while the resalt
of various purchases of 8=andle 100-volt Edison-SBwan lamps
during the past three years has always resulted in lamps
marked ¢ 100 BE.F. 8” being sent us, although the m:trkmg
on the lamps was never specified by us, u recent bateh of
Jamps that we have received contained among them certain
lamps murked “ 100 B. 8,” which not only differed in the
m:\rlkin;: but also in the filament being of a simple horse-shoe
shape, and not with a loop ut the top as in the cuse ol the
other lamps. And, on testing these Edison-Swan B lamps,
we wera surprised to find that with no one of them, \'\13'31) ran
at 100 volts, did tho watts per candle exceed 8'Y, and in some
cases the watts per candle were as low as 3:01. We have
not, however, had theze B lamps for a xufliciently long time
in our possession to bo able to express any opinion about their
life-history.

XLL O the (,'/t'l?c_qr QI' Form '!,f' I.nu_:; Waves r(.l'(‘dn»‘z.u_c) na
Rectangular Canal, and on & New Type of Long Stationary
Wares. By Dr. D, J. Koxrew g, Professor of Mathematics
in the Uulllv_"‘r.-f'ly of Amsterdam, and Dy, G. pg Viugs®.

[.\li:mnl'l"llu.\.

N s<uch excellent treatices on hydrodynamics as those of
I Lamb and Basset, we find that éven when friction is
neglocted long waves in a rectangular canal must m-c-:-“:}ril.v
change their form as they advance, becoming steoper in front
and less stesp behindf. Yot since the investigations of
de Boussinesq §, Lord Rayleigh§, und St. Venunt | on tho
salitary wave, there has been some c¢anse to doubt the truth
of this assertion, Indeed,if the reasons adduced were really
decisive, it is difficult to see why the solitary wave should

* Communicated by the Authors, ,

t It seoms that this opinion was expressed for tho first time by Airy,
G Tides and Waves,” Encye. Metrop, 1845,

I Comples Rendus, 1571, }'vl. Ixii i "

§ Phil. Mag. 1876, bth series, vol. . p. 207.

I Comptes Rendws, 1853, vol, ¢f
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make an excoption *; but even Lord Rayleigh and MeCowan 1,
who have suceessfully and thoroughly treated the theory of
this wave, do not directly contradict the statement in question,
They are, as it scems to us, inclined to the opinion that the
solitary wave ig only stationary to a cerfain approximation,

[t is tho desive to sottle this question definitively which hus
led ns into the somewhat tedions calenlations which are to be
found at the end of cor paper.  We helieve, indeed, that from
them the conclusion may be deawn, that in u frictionless liquid
there may exist absolutely stutionary waves and that the form
of their surface and the motion of the lauid below it may be
expressed by means of mpidly convergent series, But, in
order that these lengihy caloulations might not obscure other
results, which were obtained in a less élaborate way, we have
postponed them to the last part of our-paper. '

First, then, we investigate the deformation of n system
of waves of arbitrary :-’h:ljw but moving in one direction only,
. . we conzider one of the two systems of waves, starting in
opposite directions in consequence of any disturlance, after
their complete separation from each othor. By adding to the
motion of the fluid & uniform motion with velocity equal
and opposite to the velocity of propagation of the waves, we
may reduce the surface of such a system to approximate, but
not perfoct, rest.

If, then, 145 (n being a small qoantity) represent the
elevation of the surface above the bottom ut & horizontul dis-
tanee & from the origin of coordinates, wo bave succeeded in
deducing the aquation

I’
4 ’

m_3 g i tfan+iess)
a! 2\" a.r . !

whore « 18 a small but arbitrary constant, which is in close
connexion with the exact velocity of the uniform motion siven
Sk T!
to the liquid, and where o=~ = depends upon the depth
. o i
{ of the liquid, upon the capillary tension T at its surface, and
upon its density p.

% . on . N T .
On assuming Y =0 wo of course obtain the differential

® Though the theory of the solitary wave is daly discussed in the
treatise of Basset, the 'll‘.\",,lz.tix‘.vlu‘}' of his resalt with the doitring of
the necossary change of form of long waves sooms not to have sufficiontly
nttractad the attention of the author, r
T Phil, Mag. 1801, 6¢h sories, vol. xxxii

9K 92
. -
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oquation for stationary waves, and it is easily shown that the
well-known equation

n="h sech’s \/{LU

of the solitary wave is included us o particulur case in the
generul solution of this equation. But, in referring to thiy
kind of wave, wo have to notice the resnlt that, taking
cupillarity into account, u negative wave will become tho sta-
tionary one, when the depth of the liguid is small enough.

On proceeding then to the general solution, o new type of
lonyg stationary wave is detected, the shape of the surface
being determined by the equation

' /:+X /‘ \
=hune - mod. M = / 3
4 \/:a ( A i)

Wea propose to attach to this type of wave the name of
enotdal waves (in analogy with sinnsoidal waves), For k=0
they becomo identical with tho solitary wave. For large
alues of £ they bear more and more resemblunce lo sinusoidal
waves, though their general aspect differs in this respect, that
their elevations are narrower than their hollows ; nt least
when the liquid is not too shallow, in which latter case this
peculinr festure is reversed by the influence of capillurity.

For very lurge yalues of £ these cnoidal waves coincide
with the train of oscillatory wuves of unchanging shape dis-
.'n‘ﬂ':‘wl ll_\' b\:l')'\(.‘ﬁ*, \'-’llit'}l '.llcl"_'i‘()?!‘ I (/i(‘ -'/lv,'u'_',f U{I ""”_"
wieres T oconstitutes o particnlar case of the cnoidal form,
Indeed the equationf obtained by Stokes, when written in
our nolation, becomes

N os 2re BN dwx

nN=10COs - R - (;‘irﬁ’hlk,s_ x‘ M
but, us Sir . Stokes remarks, in order that the method of
A
3

4

approsimation adopted by him may be legitimate, st

be a smull fraction.  Now, when capillarity is neglocted, the
waveslength A of our enoidal waves is equal to

: “ l{ \/"“

it/ 1 AR
NV oln+ )

* Transaotions of the Cambridge Phil, Sce, vol, viii, (1847), reprintad
in Stokes, Math. nud Plivs, Papers, vol. & p. 197,

t Stokes” solution is moro general in 2o far as it applies also to those
cawes wherein the depth of the Liguid i moderate or large in respeet
to the wave-length,

| Stokes, Math, sl Phyva, Papers, vol. i, p. 214,

Change of Form of Long Waves,

and thercefors
p 1I6K* _ 16

- - R
B =3h+t) 38 MK

This s a small fraction only when M, the wodulus, is small,
but the enoidal waves then resemble sinusoidal waves : and it
is obvious that in this case the equation of their surface may
be developed in a rapidly convergent Fouricr-serics, of which
Sir (1. Stokes has given the first two tarms,

After some more discussion about these cnoidal waves, con-
cerning their velocity of propagution and the motion of the
particles of fluid helow their surfuce, we proceed to n closer
exnmination of the deformation of long waves, To this offect

we apply the equation for to varions types of non-stationary

1
a}
waves, uod it will nppenr lll:\l, U:ough sinusotdal waves -
come steeper in front when ndvancing, other types of waves
mpy behave otherwise,

dy

1. The Formula _;"nr Tk

In onr investigations (in accordance with the method nsed
by Lord Rayleigh, Phil. Mag. 1876, vol. i, p. 257, whose
paper has been of great influonce on our researches), we start
from the supposition that the horizontal und vertical w and »
of the fluid may be expressed by rapidly convergent series of
the form

w=74+yfi 44 ...
l'=.'/¢] '4“'1'2",’);  ves

whera i represents the ]wighl of a p:lr'liu(f- above tho bottom
of the cananl, and where 7 /1.« « @y, s, .. . 0ro functions of 2
and ¢, OF course the validity of this assumption muost bo
},ro\‘wl later on by the fact that series of this ql-'u'rii-linn cun
be found satisfying all the conditions of the problom.
From one of these conditions, viz., the meompressibility of
s , : ou  ov
the liguid, which is expressed by - + =0, Wo' may
or " Oy Y
llmlll('u

s !a,;l~l
- n o

and from another, viz, the absence of rotation in the fuid,
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on  ov
X il‘-I'RM‘d b\’ e e © oo 22 () 2
‘ Y3 or
=03 Ja= L ¢, e B’/’._,.
’ > L B nin—1) ot
In this manner we obtain the following set of equations :—
N 1 B‘/ 0
™o

u::./'— Y =

27 32 T 24 ¥ Ou
df . 1 .93Y 1 0

pE= -1 =

A a.“+ ";’.’1'6—:;3 B lzo_’l a.f.d +"' . (2)

and, moreover, if ¢ be the velocity potential and the stream-
{unction —

2 e UR)

. 1 1 g
¢—.J_I‘BJ‘— .;;'."2 :-_}_+ 2—‘]/ gJ’— Nite & (3)

'z .
l .,‘-QZ. + _!... W a‘j -
G o' 120 et °°°
which set of equations satisfies for the interior of the fluid all
{he conditions of the problem, whilst at the same time it is
ensy to see that for long waves theso series are rapidly con-
vergent. Indeed, for such waves the state of motion changes
glowly with » und therefore the succossive differential-
quotients with respect to this varinble of all functions re-
forring, as f does, to the state of motion, must rapidly
decrease. i
P;ugg‘_.ing now Lo tho (-c-n-liliuns at the luvnllhlnl'\’, lct M (n
consiant) be the atmospheric pressure, p," the prs'-.-s.x‘um at
wint below the surface where the capillary forces couse to act,
and T the surfece-tension. We then have, distinguishing hore
and elsewhere by the suffix (;) those qn:miitic: which refer
to the surface,

Y=1yf—

bat, according to a well-known equation of hydrodynamics,

W 09 2
]P‘- =X'\‘) — a’(’ —-,l‘(”l"* "1,)_11,’/”

dh, T 3%
{

or B L n : ,
7 =30+ ot) =g+ p ot = L—gu+ My,*

therefore

}—)—1: (2) —
p X\

. Td%,
L | )., 8 & 2 i 5
-{.-;\‘;/, -+—l‘n/, +eve p a“_,, y * o)
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whero

L=x(t)— ‘ %f,;_,-— 17,

M= O, 1 9% 1(31)

=3/32 T 33x0t 2\0u
N 1 3% o ) 13/ 2 _ 1
f

0%/
3¢/ 30 — 8loat

= ] T et T 249700
P, R, 1OV B Loy Ly oy, L 3
—Til)'ra.a' 4392% 72(8‘1" 1209« " oz 790 e’
By differontintion with respect to «x equation (5) may be
written
oM

aL N . ‘a-\. T «,Bl" i -3 _@L’l_ + 2Mu B.Ul
a_z' —r.l, a,f' ’?.lh ﬁ' )| a.l,' N _] B.x' o "'la,]‘

+ 4Ny’ g': g:' S ’—f‘g{” =0. . (6)

Morcover, a second equation must hold good ut the surfnce,

viz.
=1l B,‘u 41— a_."_l =), : . : ! ’ (7)
'auf' B‘

In order to satisfy equations (6) and (7) by the method of
successive approximations, we put yy=Ii+479, f=qgo+ B, whera
! and ¢, are supposed to be constants, and # and 8 smull
functions depending upon & and ¢, Dealing, then, with the
fact that for long waves, whose wave-length is great in gom-
parizon with the depth of the canal, every new .lilfr-mntix‘ug(m
with respect to x gives rise to continually smaller quantities,
theso Nlmllinn- become us :l_ﬁ:'.«f rq'[-n-xim:ni-m:m

38, 8, M.
B3zt 5 +9 5 =0,
T
Js a.r + BT +1 a| =),

and are satisfied hy taking

 »
.

o ﬁl'_y‘A

dn dg
de — dt
and Go= x":p’. R s e el wromrintS)

03 B=—7f (n+a),

whore & iz an arbitrary constant which we will suppose to be
small,
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It iz ohvions that th1= solution coincides with the one nsunlly
"lwn for the caso of long wuves of arbitrary shape made
stationary by attributing to the finid a \l‘lmll\ equal and
opposite to that of the waves, on the assumption that the
\el(uzl\ in a vertical direction Ry be noes 'lul\d and that
the horizental veloci ity may be ¢ onsidered uniform neross each
goction of the canal,

But, if we wish to proceed to a seeond approximation, we
have to put

f=q— '{,’-’(v+a+7'} v (®

where ¢ is small compared with 9 and a.  On subst ituting
this in (6) and (7) and on writing out the result, rejecting
i) terms® which are small r'mu[nrM with any one of the
remaining terms, wo find respectivoly :

gom . OY_ 4, on (,F,__)Br

AR Y SR Rt i an =0 + (10
and

907 _ 87 _ 95 . Bl b0, 90

I

Y, e ' 3 =0. . . (11)

O /
In eliminating altrnm these equations, we have at Jast
%

a?
d’} m/ a( ty,‘.LJ:u}-} la.é-_' )

i I (12
et (74 a$ e 4(38)
whero

"1
o=iP—=. . . . . . . (18)

P'7
This very important equation, to which we shall have fre-
quently to revert in the course of this paper, indicates the
deformation of n system of waves of arbitrury shape, but
mmm;, in one direction onl ve  DBefore app l\m-v it, we may
point out the close connexion between the constant &, which
may still bo chosen arbitrurily, and the uniform velocity
given to the fluid. Indeed it 1= casy to seo from (1) and (9)
how a varintion 8 of the constant « corresponds to a change

* The terms for instance with S0+ 3"1 and (a") are relocted in com-
dr z ’
. . Vi 1. + ' ' p
parison with r,a', which is retained in the equations, those with 07 and
ot ’ R

J
L1
.."._- ngninat 3

ox'ot o’

Change of Form of Long Waves,

fg=— '/',“5.1 in this velocity, but, on taking the variation of

(12) with respect to 2, we obtain

-'~""”__ Yo G \"7 &1 3’7

7R e Y e B

which equation may be casily verified geometrically.

II. Stationary Waves,

! d .
For stationary waves {? must bo zoro. Therefore we have
. (

from (12)
B( i+ fan + Ixag;’:) =

This gives by integration

 J
m+ini +dan - lo g:’ Uisiieiie e e er(dB)

and by multiplication with 6 dy and further integration,
g
- . RS >
ey 4 by 4 :)“é-ﬁu:)’i‘—c(\g.i') =0, . . . (15)
If now the flnid be nodisturbed at infinity, and it { be taken
oqual to the depth which it has there, then eqmations (14)
on o' _ .
o =) 1 =0,
o 04
Therefore, in this case ¢; and ¢; are equal to zero, and equa-
tion (15) leads to

9+ 22 sl
g:’ _\/-— ?-—-(”—d———)-. . . (18)

Here, bofore we can proceed, wo have to discriminata between
o positive and o nogative, In the firet case 2a is necossarily

and (15) must be satisfied by %=0, , andl

negative becanse g:’ must be real for small valnes of 4. If

then, we put it equal to —4, we have

in __'\/l — -
v i o . »’/;—~11-

from which, supposing * to be zero for n=/h, we -r-;l»ii_\' obtuin
the well-known equation of the posifiee solitary wave, viz, i—

43 -
o;:lw»xh'..x‘\/‘r'-. e« o o+ o« (1D)




480 Drs, Korteweg and de Vries on the

In tho zecond case 2x must be positive. In putting it equal
to &, and in -ulwmnhn'r —v' for 9, we have from (16)

Br =% '\/ Za W Nh=7,

or, by integration,

= —n=—hsech® r\/ _I.’

This is the equation of a negative solitary wave, and we are
able now to draw the conclusion that whenever o is negative;

that is whenever the depth of the liquid iz lees than \/'”'.

7,
the stationary wave is a negative one. For water at 207 (.
this limiting dept h is l“llllll to 047 em. (T=72, 9=981,
p=0993 B. AU D).

Now, for a further discussion of equation (15), we drop the
assumption that the fluid is undisturbed at nfinity. If then
{ b taken equal to the smallest depth of thu htlm«l we must

have ?f"’ =0 for p=0, and therefore in virtue of (15) es=0.
o
On sapposing then & positive ™, ¢; must be negative in order

: 7 , A :
thot g "may be real for small positive values of g, but then the
X -

q\qn:ltiun
' 42ap+bo=0 . . . . . . (18)

hos o positive root A& and a negative =k, and we may get
from (19)

on 1 : ay
-r:i'\-/&”(!'—"",“('(.-*-m' AR ¢ )

3y substitution in this equation (19) of =/ cos® y and by
integration, wo find

n=/c\:)nY.z'\/’Tl“:":'()f=\//,i‘,.)v -« (20)

* When e no ‘mth sy lot then / be equal to the greatest depth. Om
substitutiog o= —0o’, n=—n" we hny sgain ¢, negative,

'lf‘F"\.' 1 . : ¥
(l‘f.l ) - " n (I'-') H;--Pr, ),

/ . .}l»}-l-'
p=—g =—hony —_,
4

where A and — & are the roots of ™ —2ay-+-Uo, =0,

and, finally,
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which is the equation of a trmin of periodic waves whose
wave-length increases when k decreases,

For k=0 this length beeomes infinite, and the squation may
be shown to coincis ]c' with (17).

The following figure (fig. 1) represents such s train of

tationary waves for the case in Which k= {huft, M =08,

ILL. Stationary Periodic Waves (Cuoidal Wares).

.o - .

Proceeding now o u further investi gation of the waves
dotermined l)\ equs wtion (20), we calonlate from (10) und (11)
the value of 5.  From these oquations we gt

dy _ 1. om, (1, 9
;1..r?—“--/" ot (,:':'_ ~'p)3n

or by integrution,

=t — .:(r/d'-*- (L | - ;g- )g:?.

o 2a9p
where the comstant nf intagration ig rejectsd] because its
retention would only have hnl the oth«'t of nugmenting in

equation’ () the valie of the arbitrary constant

X,
On ~ulnntmmu then, 7 from (9) in (1) and (2), observing
that in virtue of (14)

' _ 1 -
SH — Lot ..1;’ +dan 4 6ry) = = - h‘) -—1 r-—U’) f:f)

these equations are replaced by
— P o ,
'-'=":/1—\/‘ {v+'.(»'.—-l';-” +(1+ f
{ » 4/ ¥ Zupo ]’

I 7 ¢, A
+U" -3 _]} -4 .’a’\r/r/, Lh—Lin+ .3..’!('—:_’,1;"}_1,"-%...

= \/U"M—m'/ +7)
i —— e M .
lo 'y
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When £=0 thoy determine the motion of the finid for a
solitary wave.

In the first place we now will endeavour to caleulate the
velogity of propagation. For the solitary wave this is simple
enough. If we consider that the liguid at infinity is bronght
to rest when o uniform motion with a horizontal velocity

-q:-—s’_q—l(l-ir i . (23)

is added to the motion expressed by (21) and (22), it is olear
that thix velovity, with reversed sign, must be taken for the
velocity of propagation of the solitary wave,

But for a train of oscillatory waves Sir (. Stokes has
siown * that various definitions of this velocity may be given,
leading at the higher order of approximation to different
valaes. It scemed to us most rational to define it as the
velocity of propagation of the wave-form when the horizontal
momentum of the liquid has been reduced to zero by the
addition of & uniform motion. This dofinition L'Ul‘l’(‘f‘i*’.‘lld‘-
to the second one of Sir (. Stokes. ,\(-('nr.lh,"_/\ to it. wo bive
o E‘Ul\“ lll" 4‘-;!1i1|inll

| de| (—gy=0, . . . . (24)

. o ?

where ¢ denotes the velocity of propagation, and whers
Ko

Asm —
Vi k

is equnl to the wave-length,

If, then,

[ .1'/..": ; s ’ A+ DE(K) =LK
\ Jo" 4\/;.A'lu + B E(K)=4K

, E(K v
=x{thfky{$’-¢} . . (26)

denote the volume of & single wave reckoned from above its
lowest point, we got from (24), retaining only such terms as
are of the first order compared with », &, and Ai—

* Math. ond Phys, Papers, vol. §, p. 202
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A oJ F o A . .
- of ’ \ _’J \
‘ud." u Ay ‘o { Vgl— '\,/'/ 1)-&[&—!:;/\/1 ” ({4 n)dw
= » = g — N—

Bl
-

‘ :I.t \ H:!_r/ \:(I-{» n)dax

o w0
\/‘f,'/(l—- 5
n+V

b kh E(K) P
~ V(A AR e

On subtracting this velocity from that expressed by equa-
tion (21), we obtain

8 ke Ve
- 44»_4._:\/.'1/5(1- ”‘.‘H'—a,)

9 - KE(k) / A ARIFSR
W=u—y=— \/‘;(714.- k—(k+A) ](\,i): —A -7(,,_ } ); (28)
and it i< obvious at once that in this muoner we have annulled
the velocity of the particles for which
v
= 4=

This last equation has a simple geometrical meaning. It
ni-?:-'igllzlhf.n thoso ||;n‘liu'§n.~ Iy tli;_(. 1) whoso )u:igh( above the
bottom of the channelis equal to the height where the surface
of the liquid would stand when the waves were flattened.
Therefore for a first approximation we may suy that the
varions particles of the fluid chango the dircction of their
horizontal motion at the very moment when one of these
pointz E is passing over thom.

We now procacd to the caleulation of the path of a single
|».ll'(':-.']-‘ of Auid. l,-i'! o Mo denote the coordinates of Guu'h‘ "
particle at the origin of time, and Y=ux,+F, Y =y+{ its
coordinates nt the time ¢, ' and o' its horizontal and vertical
velucity at that time, {4 ' its clevation aboye the bottom, then
we have

‘ Dt = ,\/ {\'(,,' — l) dt

v

M| . ) | | 4
= PR a éy_,
» —‘\n! fH : '\/1‘.'\)!/ a"/ ”.

Here 3’ 15 oqual to the value of n for e=a +qt; and there-
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fore we have de=(W'—g)dt, or to n first approximation
|

lt=—-dg=— - ; but then
' q vVl

iy ¥ Valit

(—\')/‘— Ve fo. A
B o bbbVl Sy

Or, aceording to o well-known formula #

y o MhEONT, 122K (ag 4 vV al . t)
£ 4P [y (Kisr R

2K A

At the same time wo have

po
SR N

P k

= fik- ke
v a: "{": I — f— .’/ . L(‘ll.‘\"‘” + \/y( z l"\// ‘ 1:7x

p fo4 b
b & | RN AW o iy * ° - ol
on ;o ] (50)

OFf conrse, ns all Auid particles with the same y describe
congruent paths, these formule may be simplified by sup-
posing wy==(),

LV. Deformation of Non-Stationary Wiaces.
J ! g

In order to study the deformation of non-stationary waves,
we will now apply onr formula (12) to various types of waves,
Solitary Warves.—As a first example we choose o solitary
waye whose surface is given by
n=hseelP pe. . . . . . . (81)
According to (12), the deformation of this wauve is expressed
by
d Sqarh - . <
o/ P e (dop*—h) | —sech® pr
dt {
s 2(a+ 2ap%)

3oy’ —h) sech? pe.tanhpe. . . (82)

But before we are able to draw any conclusion from this

: T dr,
pxprf_-,m\-:on’ 1t 18 nf,-n‘_-s-.’lr)' 10 .-u]l:ll‘uh,' “!(’ two [mrts Of !(). Uf
de’

e
}:v K 3 A ' R .
= =~y | =M*| en'w. dw. Compare, forinstanecs, Cayley,

K /

o
; ; A A R P e A . -
‘An Elementary Treatiso on Elliptie Functions,' 1876, ch. vi, § 187,

- Z(M;uu(

Change of Form of Long Waces,

which the first is due to n true change of form of the wave-
surface, whilst tho second miy be attriboted to a smal
advancing motion of the wave, which iz leftafter the addition
of the uniform motion with \’--lm'il)‘ v/,_.:\/'l.v//. To this effect
we have still at our disposal the quantity a, whose close con-
nexion with the oniform motion, which we have added in
order to make the wave nearly stationary, has been indicated
above,

Ono of the best ways to obtain the desired separation is
certainly to muke stationary the highest point of the wave,
and this is effected by fulfilling the condition

a4 2op’) = 3(dap’~h),
ar
a=dop — 3 ;

for in that cass vquation (32) is <implified to
- » ) l

(,l L‘,. .‘/' o . & e
{(I — __._L’}... (-10’,‘1'-/1} _-;n'n'}.‘ J L (;lllll : ) L \'"";
1 ‘

and then, for x=0,

an an
e IR Y

g L
N 16 zoro together with Y

In discussing thix squation (33), wo see at once that a
solitary wave (1) is stationary when i=4ap*; and this is in
necordance with the equation (17) of the stationary solitary
wave which we have oblained sabove. When h>4ep?, the
change of form of the wave, calenlated from (337, 5 shown
by the dotted line in fig. 2.

Here the wave becomes steoper in front*, whilst for
h<Aap? the figure would show the opposite changs of form,
when, contrary to the opinion expressed by Airy and others,

the wave bocomes losz steep in front and s'it'-'iu'l: behind,

* The left side of the figure is tho front side of the wive, becgiss the
wavo has been made stationary by the application of a positive yelocity
(f. & from left Lo night) to the thnid.
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If, now, we take account of the fact that, ns may casily
bo inferred from (31), the wave-surface hecomes stesper in
> SIS . e v Ry che
proportion as p is increased, we are then justified in saying
that a solitary wave which is steeper than the stationary one,
corresponding to the same height, bocomes less stoep in front
and steoper behizd, but that its behaviour is exactly opposite
when it 15 less steep than the stationary one.
Cnoidal Waves—Applying formula (12) to the cooidal
WRYE,
R et 21"
=AMty <« v o o o o ((34)

we et

Seph [ 2la—ap*(2—4M*)] .
(h)__ Jopht | 2 a—ap*( ‘\1_)_._‘,"n'1,.l.}(,10‘\_1'.‘/;‘

dt = L L (e MH=1)
—h) s pue . on pe Ao pae {35)
Supposing then
a—opt(2—AMY | =B34 M —4h),
| { ) \ ; :
we have
a0 e - . Qe
- I;“ . H':A\[!/:‘ —5k) B P, On pax . dll/-.r. {96)
Here fig. 3 shows the change of form caleulated for the
case i =4a Mt >0,

Iig.

i

'y

‘V]wn fu—-lo'.\['z :’2:(', the waves are s!:ni«’m:u’_\’ ill aceord-
ance with (20), w{ni}st for h—4aM%p® <0 they become steeper
lehind: and this last resalt, sinee p is inversely proportionul
to the wave-length, may be stated by saying that enoidal
wives become less steep in front und steeper behind when,
for 4 given modulus and a given height, their length is smaller
than the one required for the stationary wave of this modulus
and lw:.;.;llt. :

In proportion as M is taken smaller the ecnoidal waves
more and more resomble sinusoidal waves. They would take
the sinnsoidal form for M =0, but then an infinitely small wave-
length would be required for the stationary case. For this
reason sinusoidal waves may always be considered us enoidal
waves whose length is too Iarge to be stationary, that is, they
are always becoming steeper 1n front,

Change of Form of Lony Waces.

{."-.'u-z..-ui:l.u' ”':x":'.c.——'”li* !1:>l l'l*\llll 1% u:l:sii‘v' \'Ul'iﬁt“
direet appheation of (12) to the equation of a train of sino-
soidal waves:

.

=As= :'
n in =

»
tor, supposing
Vard
T a
3= HOW
» A"
we obtain
¥ .
ay 'L‘,';.'ﬂ"‘\’ . darr
= ‘ i H

dt e A

nxid ’,mm this tho change of form indicated in fig, 4 is easily
'{\lt'lh.(t(‘-l.

o I h % e y 1 ’ o

More complicated Cases.—For the sake of ecuriosity, we
represent hy means of the following figures the chango of form
. s . - » "
for some more complicatod cuses,

-

Fig. &
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Figs. 3 and 6 refer to the equation
s R . AWE
n=A, sin =t 1A, sin et

v Biis A I\"
In fig. 5 -T‘ 13 ‘“l'l'“"i‘l to be small compared with (R ), 1V

is the case with waves of extromely small height,  In fig. 6

{ 2 . .‘\~ -~y .
WO Suppose (K) to be smll in regard to T Generally for

mory ('()llll;“C:!!C‘ol t'«_-rm- of wave l}.(‘w' LWO  Qiss ]m\'c' 1o b
diseriminated. When there is a moderate prolmrnunnln)
between the two fretions the result is still more complicated.
Finally, fig. 7 refers to the equation
. 2wy ’ ~’.1’.’.4'
p=A,; sin ———=— LA, sin —

A A
N : .
in coso that (-i) s the smallor fraction.

It is worthy of remark (hat all these waves grow stecper
m front,

V. Caleulation of the Flwid Motion for Stationary Waves to
the Higher Order of Appro comnalion.

In order to remove every doubt as to the existence of
absolutely stationary waves, we will show how by develop-
ment in mpidly convergent series the state of motion of the
fluid belonging to such a wave-motion may be calenlated.

Expressing sgain the lorizontal and vertical velocity of a
p:n-ticﬂo by means of the serics (1) and (2) which fulfil all
the conditions for the interior of ihe fluid, we have only,
noglecting capillarity, to satisfy the surface-conditions,

oy N
1= la“‘ . . . . . .
oL

and wy? 4 v + 2¢n= constant.

For the ease of enoidal waves, which is the general one,
we have found as o first approxumation,
o\ _ 6, \
—_— v Ul - |/k+ e
(a,f o ‘ A 7
But now. to obtain higher approximations, we assume, indi-
cating by accents differentiation with respect to v,
ni=an(h—=n)(k4+n)(A+inteof+...), . . (849)
and
’/'—: U i B ot e ' . . s . (‘10)
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On writing out (39), neglecting such terms as are of u
lu;:.hnr order than the fourth compared with », A, and &,
which lattor quantities are of the same order, we obtain

l}“:ul’:.’.'l) + {ftf_/u - /\l + r.v"/.'.('}n:'+ : —a+ab ‘;’i""} }7)::-‘”"1‘; .
and by differentintion,
v]"' — }a,qk -t {.t {_’: —_ J.) -+ 1[1»]&.1. :'7) -+ ’. — ..:f! -+ 5((’:(’1 —{) : ’)'2 —‘2(:“").:-

A ) A . .y . - . -

From (40), by successive diffsrentintions und substitutions,
retaining all terms up to the third and the 33% order, we
deduce :—

S=(r+2m+3tn*)n;
["=Yarkk+ {ar(h—E) + abrhk + Bushkiy
+{—dar +Fabr(h—£) + das(h—k Vi 4 (= 2abr—Sas)n";
*’.m - [“r("' ’_‘) = ctlirhke 4+ Sundike
4 { =3ar + dabr(h—F) + Bas(h—k) by + (—balr —15as)n? |of ;
Jv=Ya%rhk(h—k) + {a% (h—= k) = faPrik}n
— 1:-;,-‘,‘4,.(;,_./_.) o+ l_ftl!l'r)';

Sr=[atr(h—k)2—Jarik—15a%r(h— L&)y + 8oty 1y ;

where /i3 & quantity of the order 3.
Substituting these values in equation (1), where y=I+4ny,
) 3% . . . Vi< v

we have, retaining terms of the third order :—

uy=f= 3 /" — I 4 Al =g — Larlhik + .A's“'z""'/"'(" — )
+ §r—larl!(hi—Fk) —labrlhle—=Jaalflk = farlhk
+ el (h—=k) — o’ rl'hk}y
<+ {.6 + "j'd["" - ;;d"'rf:( h—=F)y=2asl(h —k)
—arl(h—k)— fyatel (h—= &) $ o
+ e+ abrl + Jael + Jarl 4 fparlin'. o
Wo find in the same way, including terms
order ;—
==l ="+ JO A = ket
= [ =l + Jarl{h—K) + JadmrBhk 4 Jaxlhk— vhoa®rP(h—k)2
—- *-‘"u"; Ak 4+ {— 2l — p— %ur! -+ i:tl_'r:" (/1—}')
+ $aali(hm k) + gartt(h—K) + BarP (k=)

+ § = 8tl— 2 — abrl* —Jasl = Farll = {a*r it ], . (44)

262
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1f now we write, in necordance with (37),
= r; =A+ Bv) -+ (.'4)2-4; l’r)“ < SN
Y
we have from (43) and (44) - —
.'\ =Q‘—- zlrl'l';”'){ '{ .I,L(Er!‘/il.'gla e A'j = —y! -+ ,':zu‘f lllrl‘l - ,(')
4 dabnrPhk 4 Jaslhk— bl (h—k)* + Jpa®r AL .

B=rp=—tarl®(h—k)—fabr*hk— Sasl'hk — yariki

+- ,;_]’(.'"‘I‘}.l:/l L b l-'"“x"';'.“/;.‘.‘z — 2l == Jar!

=t _é.ﬂ;,'l':( h=—k| + .“u; ' ‘/4 - ;'] + {\f.n‘«”(_ h—1 )+ ~_"-Al"'1':\" t'\/‘ ).

(=g 4 a0l —Fabrl (h— k) = 2asl(h — k) —arl( h—k) = Syadrit (h—k)

= ]~ 2.~ —ulu‘!‘ — ':{ll.‘!: —3{«:4'{‘— lll.“':"l‘.“ .

D=t+ a4 funt" “+ iwf T ;’,;dgl'l“. a \a ‘A" w? alidla (49)
Moreover, since (38) may be written in the form
(149" + 2= (A + B+ Cn*+ Dy ¥(1 +-ahkn
+a(k—=k)nt—an’) +2Zgy=constant, . . . . (90)
we readily obtain
2AB 4 alib AR 4 2:]:”, Al YN (")l)
PACH B2 4ali—)A'=0. . . . . (562)
ZAD 4+ 2B0J—=aA%=0), o n e (DS

From the equations (46), (47), (48), (31), (52}, (53), the
six qoantities g, r, 8, 1, @, and & may be caleulated, and if wo
had retained everywhere terms of ono higher order, we might
have got eight equutions with cight unknown quantities, &c.

By u first approximation we readily obtain from (46)~(49) :—

Vi

{5 4=k +iagt L= hag + habgl— FyatP

et WL s | I o po=

S g -4 -
A:u[; L;-‘,l, A -—.,_,-—,J‘;u:j/,
D=— '!l -+ :o;q//—:':.:u'uii 4 }_u‘:ﬂ'; 3

and then from (51)-(53),

-IQ ='«!.} ?

(18)

Chlange of Form of Long Waves.

Proceading to the second approximation, we find

ho—k

g 1/—‘('_ = ST )
r=—F(1+"5 )i 4 foHdogl 1= A=y

B=—7 417 A=k o

19¢g h=k
(o O= g —dagl— f o~

§8°TT?

and then again from (51) and (52},

; fo—k 0 15 h—& ¥ R\
./':‘ulv’(\] +4- l--); = BTy o (343)

Finally, a third approximation leads to :—

k_ 9 (A=R)? _O3RE\ . o Kk
T —wuy‘"TwWFv
l/ ,.'—‘ 21 l’ (l( —.’-')‘2 Iz l] ,l‘ X

("1 " 20 B s iRt A

fi — L= k)" 33 hk
,/‘-‘:-..;1(]+ i—k 1 (A=) H/!)' S0 e

] T B 3 =

By means of these results we may now readily obtain from
(1) und (2) expressions for v and v including respectively
the terms of the 2% and 24% grder. '

They are :—

- h—k 8 (h—k®  B3Lk
= v",,({(u <SSkl ),; (14

2 9 T 4oR

:t(l— ; }‘;i‘ ‘)l.f:-—r;)(,i' +7;\|(1 - :' .

V1. Caleulation of the Equation of the Suyface.

We will now show how for the equation of the surface of a
stationary train of waves a more correct expression than (20)
can be deduced.  For this purpose we have to integrate
the differentinl equation (89), or rather we have to prove that
] *4-!‘3-'\ can |n~' ;_';i\'-n \'-hit‘ll 'lll\'t" !Ili:s o--iu.iﬁnll 10 :ll).‘y'lll‘.\il"‘ll
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degreo of necuracy. Now such a series may be obtained in
the following manner. Lot
f

6oy
hy + &y (

n=het}e Vil Ry (M=q/

represent tho solution of an equation
1 | Jar e
" = am (A —n0) (4 M)y « = » » (61)
whare A and & have values which are slightly different from
those of 4 and % in (39); then these values and the coothicients
a, B, &e., of & series
Py 2,0 ¢ B8
n=an+ En" 4y +omit.e o (“'2)
may be dotermined in such a way® that this saries (62)
satisfies the equation (89).
Indeed, substituting (62) in (39) and taking into acconnt
(j(:l )y \"iill:lri(m (.:};f.'} reduces to
§ ¢ A \
(4280, 43y, + .. S hy=—n )k +m)
= {a+4 B 4+ o Yh=an =B —om"+ .o 0) (k4o
+8m am oo ) bayy o+ (BB 4 calp® + 4 ),
and it is only necessary to oqualize the coefficients of the
corresponding terms of both members of this equation.
If we rotain all terms to the fonrth order, we find in this
way, after some reductions :(—

ahdy—=hk=0. . . 4 i o 4 ee a e v [68)
o=k —af(h—=1) = (haf =88 k=0, . . . . . (04)
— & 4 at— (ba' = 2a28) (h— k) — (ca’ —2a?B + 88 — Say)hk=0 (5)
—4a8 + 8a*8 + bat — (ca® + b8 =3P —Aay)hi—=k) =0 . . {66)
— 452 —Bay 4 ca' + 410®B+ 3aF 4 Baly=0. 1 . . . . . (67)
To u first approximation these equations are satisfied by

taking
h=h; by=k;a=1; B=b; y=l+}c . . (b5)

If then we substitute in (68), (64), (65), and (66)
/’l‘.:.ll + €, A"]:“-{»"!, a=1 + &y ,9:/..{. "3‘
where &, and 3, are quantities of the first, ¢ and @ of the

second order, wo find from these equations by gecond :(m.ru\i-
mation:—
® The coolficient a in (61) might also have been choson slightly

different in valua from o in (39), but this would ouly have introduce d
an unnoceasary indeterminatencss in thy solution,
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e —bhk; o=bhk; 2==blAh=k); Bi=(=20%4ko)(h—4k). . (65)
Substituting as a third approximation :—
hy=h=blk+e¢; ky=k+blk+a, a=] (=) 4 ay,
we obtain finally,
ey =Johk(—h +28) s @y=YehA(2h—K) ; ay=(0*—3e)(W*—Lk+A%).(70)
Henoo the oquation of the surfaco of the waves is, including
all terms of the third ordor : —
n=[1—=0A=k)+ (0% =Fe) (A2 —hk+ B ) ]n + [0+ (=207
+10) (h—BYl -+ (554 S+

| 1§

Joy o= DIk 4 -K.f‘/l‘ (—=h+28); k=k+ bk + hohk(20

whore

”vrv. necording to (59),
o

a3 Shh—=k ) a4 -
"'—"-}.(l"‘ j +«-.); "-—”'0'-..;. . (73)
whereas the value of ¢ and more corroct expressions for a and
b could only hnve been obtained by means of still more tedious
caleulations, which we have not executad.

If wo confine ourselves to that degree of approximation for
which all the calenlations have been effected, wo may write
for tho equation of the wave-surface :— ' '

,_‘I'l_nnf/;—l)}' : 3’ g (74
)_L T, h 41 i o o o o LI

G S(A—&)) W+ k) S
Ny=1 |'1‘|" :( | = "\_., ‘)." \/ { ‘[ . . a1k l'..))

(. 3k i
M =(‘l — &l )\/,;A

For the solitary wave, whon &=(), we have *
rl :’:.’::] 3 o
u—l_ =3/t gm

w, = h sech? 5( | = :‘:’ ) »r \/'E .

i
Junuary 1895,

* Another close approximation of the mnface-equation « f thisx wave hns
boen deduced by MeCowan, 1"hil, Mag, (5] vol, xxxii, (1501), p. 44,




