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The allocation of resources within a system of autonomous agents, that not only have
preferences over alternative allocations of resources but also actively participate in com-
puting an allocation, is an exciting area of research at the interface of Computer Science
and Economics. This paper is a survey of some of the most salient issues in Multiagent
Resource Allocation. In particular, we review various languages to represent the pref-
erences of agents over alternative allocations of resources as well as different measures
of social welfare to assess the overall quality of an allocation. We also discuss pertinent
issues regarding allocation procedures and present important complexity results. Our
presentation of theoretical issues is complemented by a discussion of software packages
for the simulation of agent-based market places. We also introduce four major applica-
tion areas for Multiagent Resource Allocation, namely industrial procurement, sharing
of satellite resources, manufacturing control, and grid computing.
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1 Introduction

The allocation of resources is a central matter
of concern in both Computer Science and Eco-
nomics. To emphasise the fact that resources are
being distributed amongst several agents and that
these agents may influence the choice of alloca-
tion, the field is sometimes called Multiagent Re-
source Allocation (MARA). The questions inves-
tigated by computer scientists are often of a pro-
cedural nature (how do we find an allocation?),
while economists are more likely to concentrate
on qualitative issues (what makes a good alloca-
tion?). A comprehensive analysis of the problem
at hand, however, requires an interdisciplinary
approach. Here the multiagent system (MAS)
paradigm offers an excellent framework in which
to study these issues.

MARA is relevant to a wide range of applica-
tions. These include, amongst others, industrial
procurement [45], manufacturing and schedul-
ing [15, 71, 89], network routing [38], the fair
and efficient exploitation of Earth Observation
Satellites [59, 60], airport traffic management [52],
crisis management [62], logistics [49, 77], public
transport [16], and the timely allocation of re-
sources in grid architectures [48].

This paper is a survey of some of the most
salient issues in MARA. In the remainder of this
introduction, we first give a tentative definition of
MARA and introduce its main parameters (Sec-
tion 1.1). To illustrate the interdisciplinary char-
acter of the field, we then list some of the research
questions that we consider particularly interesting
and challenging (Section 1.2). Finally, we give an
overview of the content of the main body of the
paper (Section 1.3).

1.1 What is MARA?

A tentative definition would be the following:

Multiagent Resource Allocation is the
process of distributing a number of items
amongst a number of agents.

However, this definition needs to be further qual-
ified: What kind of items (resources) are being
distributed? How are they being distributed (in
other words, what kind of allocation procedure or
mechanism do we employ)? And finally, why are

they being distributed (that is, what are the ob-
jectives of searching for an allocation and how are
these objectives determined)?

1.1.1 Resources

We refer to the items that are being distributed as
resources, while agents are the entities receiving
them. We should stress that this terminology is
not universally shared. In the context of applica-
tions of MARA in manufacturing, for instance, we
usually speak of tasks that are being allocated to
resources. That is, in this context, the term “re-
source” (i.e. the resources available to the manu-
facturer for production) refers to what we would
call an “agent” here.

We can distinguish different types of resources.
For instance, resources may or may not be divis-
ible. For divisible resources (such as electricity),
different agents may receive different fractions of
a resource. In the case of indivisible resources, it
may or may not be possible for different agents
to share (jointly use) the same resource (e.g. ac-
cess to network connections as opposed to items
of clothing). For many purposes, task allocation
problems can be regarded as instances of MARA
(if we think of tasks as resources associated with
a cost rather than a benefit).

1.1.2 Allocations

A particular distribution of resources amongst
agents is called an allocation. For instance, in
the case of non-sharable indivisible resources, an
allocation is a partition of the set of resources
amongst the agents. The set of resources assigned
to a particular agent is also called the bundle al-
located to that agent.

1.1.3 Agent Preferences

Agents may or may not have preferences over
the bundles they receive. In addition, they may
also have preferences over the bundles received by
other agents (in the case of network connections,
for example, the value of a resource diminishes if
shared by too many users). The latter type of
preferences are called externalities.

Agents may or may not report their preferences
truthfully. To provide incentives for agents to be
truthful is one of the main objectives of mecha-
nism design.
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1.1.4 Allocation Procedures

The allocation procedure used to find a suitable
allocation of resources may be either centralised
or distributed. In the centralised case, a single en-
tity decides on the final allocation of resources
amongst agents, possibly after having elicited
the agents’ preferences over alternative alloca-
tions. Typical examples are combinatorial auc-
tions. Here the central entity is the auctioneer
and the reporting of preferences takes the form of
bidding. In truly distributed approaches, on the
other hand, allocations emerge as the result of a
sequence of local negotiation steps.

1.1.5 Objectives

The objective of a resource allocation procedure
is either to find an allocation that is feasible (e.g.
to find any allocation of tasks to production units
such that all tasks will get completed in time); or
to find an allocation that is optimal. In the latter
case, the allocation in question could be optimal
either for the central entity choosing the alloca-
tion (e.g. a solution to a combinatorial auction
that maximises the auctioneer’s revenue); or with
respect to a suitable aggregation of the prefer-
ences of the individual agents in the system (e.g.
an allocation of resources that maximises the av-
erage utility enjoyed by the agents).

Combinations are also possible: The objective
may be to find an optimal allocation amongst a
small set of feasible allocations; and what is con-
sidered optimal could depend both on the pref-
erences of a central entity and on an aggrega-
tion of the other agents’ individual preferences
(e.g. auction mechanisms aiming at balancing rev-
enue maximisation and bidder satisfaction). Of
course, where computing an optimal allocation is
not possible (due to lack of time, for instance),
any progress towards the optimum may be con-
sidered a success.

1.1.6 Social Welfare

Multiagent systems are sometimes referred to as
“societies of agents” and the aggregation of indi-
vidual preferences in a MARA system can often
be modelled using the notion of social welfare as
studied in Welfare Economics and Social Choice
Theory. Examples include utilitarian social wel-
fare, where the aim is to maximise the sum of

individual utilities, and egalitarian social welfare,
where the aim is to maximise the individual wel-
fare of the agent that is currently worst off.

1.1.7 The Role of Agents

Our discussion shows that the term “multiagent”
in Multiagent Resource Allocation can have dif-
ferent interpretations:

– If a distributed resource allocation procedure
is used, then the term “multiagent” indicates
that the computational burden of finding an
allocation is shared amongst several agents.

– If an aggregation of individual preferences is
used to assess the quality of the final alloca-
tion, then the term “multiagent” refers to the
fact that the choice of allocation depends on
the preferences of several agents (rather than
on the preferences of a single entity).

Of course, the term “multiagent” could also be
derived merely from the fact that resources are
being allocated to several different agents. How-
ever, if individual agents have no preferences (or
such preferences are not taken into account) and
the allocation procedure is centralised, then using
the term “multiagent” may be less appropriate.

1.1.8 A Computational Perspective

MARA, as introduced at the beginning of Sec-
tion 1.1, may not seem to differ significantly from
what has traditionally been studied in Microeco-
nomics. However, a distinctive feature of MARA
is the focus on computational issues. For in-
stance, with respect to the preferences of individ-
ual agents, we are interested in representations
that can be efficiently managed and communi-
cated. Similarly, in the case of allocation proce-
dures, MARA encompasses both the theoretical
analysis of their computational complexity and
the design of efficient algorithms for scenarios for
which this is possible. As a final example, con-
cerning the strategic aspects of negotiation, we
may find that classical results in Game Theory
fail to hold due to the computational limitations
of the participating agents.
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1.2 Research Topics

MARA is a highly interdisciplinary field; rele-
vant disciplines include Computer Science, Ar-
tificial Intelligence, Decision Theory, Microeco-
nomics, and Social Choice Theory. Research in
MARA can take a variety of forms:

– Preferences: What are suitable representa-
tion languages for agent preferences? Issues
to consider include their expressive power,
their succinctness, and their suitability in
view of preference elicitation.

– Social welfare: What are suitable measures
of social welfare to assess the quality of an al-
location for a given application? Under what
circumstances can we expect an optimal al-
location to be found?

– Complexity: What is the overall complex-
ity of finding a feasible/optimal allocation?
What is the complexity of the decision prob-
lems that agents need to solve locally? What
is the communication complexity (amount of
information to be exchanged) of negotiation?

– Negotiation: In particular for the distributed
approach, what are suitable negotiation pro-
tocols? What are good strategies for agents
using such protocols?

– Algorithm design: How can we devise effi-
cient algorithms for MARA (e.g. algorithms
for combinatorial auction winner determina-
tion in the centralised case; algorithms to
support complex negotiation strategies in the
distributed case)?

– Mechanism design: How can we devise nego-
tiation mechanisms that force agents to re-
port their preferences truthfully (both to re-
duce strategic complexity and to allow for a
correct assessment of social welfare)?

– Implementation: What are best practices for
the development of prototypes for specific
MARA applications and general-purpose
platforms to support quick prototyping?

– Simulation and experimentation: How do dif-
ferent optimisation algorithms or negotiation
strategies perform in practice? How serious

is the impact of theoretical impossibility re-
sults in practice? How prohibitive are the-
oretical intractability results (computational
complexity) in practice?

– Interplay of theory and applications: What
constraints do real-world applications impose
on theoretical models for MARA? How can
theoretical results inform the development of
new tools?

The aim of this survey is to provide a base line
for some of these issues. In particular, we present
a range of languages for representing preferences,
we give an overview of the social welfare measures
most relevant to MARA, and we review known
complexity results in the area. As it is often dif-
ficult to make precise predictions on the perfor-
mance of a resource allocation procedure by the-
oretical means alone, we also discuss the require-
ments to be met by software packages for MARA
simulations. To underline the importance of fur-
ther research in the area, we introduce several
prestigious applications and discuss the challenges
imposed on MARA models by these applications.

1.3 Paper Overview

The remainder of this survey paper is organised as
follows. In Section 2, we introduce four major ap-
plication areas for MARA technology. These are
industrial procurement, the joint exploitation of
Earth Observation Satellites, manufacturing con-
trol, and grid computing. Throughout Section 2,
we highlight the specific challenges raised by these
applications.

Next we review three important parameters
that are relevant to the definition of a MARA
problem. Firstly, in Section 3, we discuss generic
properties of resources, such as being indivisible
or sharable, and how such properties would affect
the design of a concrete MARA system. We then
move on, in Section 4, to the issue of preference
representation for individual agents. Each agent
needs to be endowed with a suitable representa-
tion of preferences over alternative allocations and
it is important to be able to express these prefer-
ences in a compact way. We discuss both quanti-
tative and ordinal preference languages. A third
parameter in the definition of a MARA problem
is the social welfare measure (or a similar tool) we
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employ to assess the overall quality of a given allo-
cations. A range of different concepts—including
collective utility functions, Pareto optimality, and
envy-freeness—are reviewed in Section 5.

In Section 6, we attempt to give a short
overview of the parameters that are relevant when
one chooses (or designs) an allocation procedure.
We discuss the respective merits and drawbacks of
centralised and distributed approaches to MARA,
and we briefly introduce some (centralised) auc-
tion protocols as well as (distributed) negotiation
protocols. We also report on results that establish
under what circumstances allocations can be ex-
pected to converge to a socially optimal state in
a distributed negotiation setting. Section 7 is a
survey of relevant complexity results. We mostly
concentrate on the computational complexity of
problems such as finding a socially optimal allo-
cation, but we also briefly discuss issues in com-
munication complexity for MARA, which is con-
cerned with the length of negotiation processes.

Our presentation of theoretical issues is com-
plemented by a discussion of software packages
for the simulation of agent-based market places in
Section 8. We start by giving an overview of the
typical requirements to be met by such packages
and then list the most relevant software products
available to MARA researchers interested in sim-
ulation. Finally, Section 9 concludes.

2 Application Areas

As mentioned already in the introduction, MARA
is relevant to a wide range of application domains.
In this section, we introduce four of these prob-
lem domains, all of which have recently been ad-
dressed by (some of) the authors of this survey.

2.1 Industrial Procurement

The sourcing process of multiple goods or services
usually involves complex negotiations that include
discussion of product features as well as quality,
service, and availability issues. Consequently, sev-
eral commercial systems to support online negoti-
ation (e-sourcing tools) have been developed. In
fact, e-sourcing is becoming an established part of
the business landscape [90]. However, there are
still enormous challenges confronting users who
want to get the maximum value out of e-sourcing.

2.1.1 Problem Description

Traditionally, the core of the sourcing process
comprises the following tasks:

– request for quotation/proposal (RFQ/RFP);

– provider selection for RFQ/RFP delivery;

– offer generation;

– negotiation through offer/counter-offer inter-
action or reverse auction; and

– selection of best offers.

Typically a buyer creates an RFQ by sequentially
adding items. Each item specifies a product, be
it a good or service. A paradigmatic example of
multi-item RFQ occurs in industrial settings. The
production plan outlined by a company’s ERP
(Enterprise Resource Planning) or SCM (Sup-
ply Chain Management) application comes in the
shape of a list of items to be produced along with
the parts required for each product, the so-called
bill of material. This is the basis for the buyer to
initiate multiple sourcing events, each devoted to
the procurement of the parts for each of the items
to be produced.

Although several commercial systems to sup-
port online negotiations have been released, to
the best of our knowledge, not a single system
can claim to address the full complexity of online
negotiation. The first generation of sourcing tools
merely incorporate single-item, price-quantity re-
verse auction mechanisms. Others only offer ba-
sic negotiation capabilities that are usually re-
duced to a demand-offer matching tool. In general
terms, there is a lack of decision support function-
alities (decision making in sourcing can involve a
few hundred offers, each of which is described by
several dozen attributes). Furthermore, there is
a lack of technology support for computationally
complex negotiation paradigms, which inhibit the
application of promising mechanisms such as com-
binatorial reverse auctions [24, 54].

2.1.2 Challenges

Although the degree of automation, namely of
delegation to trading agents, in industrial pro-
curement settings is still low, we do believe that
MARA techniques can contribute to improve this
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situation. In what follows we identify several chal-
lenges that any commercial tool aiming at the
successful implementation of resource allocation
amongst several (human or software) agents in an
industrial procurement setting must address.

– Preferences of buyers and providers. How do
we best capture and represent trading agents’
preferences so that they can effectively value
their trading partners’ offers, counter-offers,
and RFQs? While recent advances in prefer-
ence elicitation are encouraging (see, for in-
stance, the work of Bichler et al. [6]), this
still remains as the Achilles’ heel of indus-
trial procurement applications.

– Business rules to constrain admissible alloca-
tions. While in direct auctions, the items to
be sold are physically concrete (they do not
allow configuration), in a negotiation involv-
ing highly customisable goods, buyers need
to express relations and constraints between
attributes of different items. On the other
hand, multiple sourcing is common practice,
either for safety reasons or because offer ag-
gregation is needed to cope with high-volume
demands. This introduces the need to ex-
press constraints on providers and on the
contracts they may be awarded. Providers
may also impose constraints on their offers.
Therefore, highly expressive languages for
both buying and providing agents are re-
quired.1 Incorporating business rules into al-
location procedures can lead to more balanced
and safer allocations.

– Automated negotiation strategies. There are
several dimensions to take into account when

1Consider a buyer who wants to buy 200 chairs (any
colour/model is fine) for the opening of a new restaurant
and who uses an e-procurement solution that launches a
reverse auction. If we employ a state-of-the-art combina-
torial auction solver, a possible solution might be to buy
199 chairs from provider A and 1 chair from provider B,
simply because this is 0.1% cheaper than the next best al-
location and it has not been possible to specify that, in
case of buying from more than one provider, a minimum
of 20 chairs purchase is required. In a different scenario,
the optimal solution might tell us to buy 150 blue chairs
from provider A and 50 pink chairs from provider B. Why?
Because, although we had no preferences over the regard-
ing colour, we could not specify that all chairs should be of
the same colour. Although simple, this example shows that
without modelling natural constraints, solutions obtained
may be mathematically optimal, but unrealistic.

designing negotiation strategies. Agents may
negotiate over multiple attributes of the same
item, over a bundle of multiple items, or they
may hold separate but interdependent ne-
gotiations. Negotiation techniques such as
trade-off [37] or partial-order scheduling [102]
are candidate techniques put forward from
the research arena. The current procurement
practices tell us that the possibility of auto-
matic offer submission is seen with interest
for repetitive sourcing events in private e-
sourcing platforms where providers and busi-
ness rules are well-known or result from a
provider qualification procedure or a frame
contract. Nonetheless, the full application of
such automated trading still faces barriers,
such as providers not wanting to reveal their
capabilities/preferences to third parties.

– Choice of mechanism. Commercial sourcing
tools offer an ever increasing number of cus-
tomisable negotiation mechanisms. Nonethe-
less, market design is a highly complex, intri-
cate task. New trends in automated mecha-
nism design [22] as well as evolutionary mech-
anism design [73] may prove valuable in as-
sisting in the design of market scenarios that
ensure certain global properties.

– Winner determination algorithms. Further
research into algorithms capable of iden-
tifying the optimal set of offers in multi-
attribute, multi-item negotiation scenarios
with side constraints representing business
rules is required [45, 83].

– Bundling. Should a buyer (seller) conduct
a single negotiation or auction for an entire
bundle of goods he or she is interested in pur-
chasing (selling) or should they group items
into bundles and conduct several negotia-
tions? Unfortunately, for complexity reasons,
combinatorial bidding capabilities are rarely
found on commercial systems. To overcome
this problem, we can think of a third ap-
proach: Based on past market real data and
knowledge, the whole bundle of items can be
divided into separate negotiations for which
the appropriate providing agents are invited
and for which certain properties are satisfied
(e.g. invite providing agents that can offer at
least 90% of the items in the bundle). These
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properties model the expertise of e-sourcing
specialists in the form of rules of thumb [76].

Some of these challenges are already being tackled
by recently developed negotiation support tools.
iBundler [44, 44], for instance, is an agent-aware
decision support service acting as a combinatorial
negotiation solver for both multi-item, multi-unit
negotiations and auctions that can integrate busi-
ness rules to constrain admissible solutions. iAuc-
tionMaker [76] is a novel decision support tool for
mixed bundling that can help an auctioneer de-
termine how to group items into promising bun-
dles that are likely to produce a high revenue.
Promising bundles are those that satisfy certain
properties believed to be present in competitive
sourcing scenarios. These properties are defined
by e-sourcing professionals and capture their ex-
perience and knowledge in the domain.

2.2 Earth Observation Satellites

Next we consider another real-word application,
namely the exploitation of Earth Observation
Satellites (EOSs) [10, 59, 60]. This application
pertains to the problem of allocating a set of in-
divisible goods to some agents with no possible
monetary compensation between them. As we
will see, this is a typical case of a sharing problem,
different from an auction situation, especially be-
cause fairness is a key issue.

2.2.1 Problem Description

Due to their high cost, space projects such as
EOSs are often co-funded and then exploited by
several agents (countries, companies, civil or mil-
itary agencies, etc.). The mission of an EOS is
to acquire images (photos) of specified areas on
the earth surface, in response to observation de-
mands from users. Such a satellite is operated
by an Image Programming and Processing Cen-
ter. Each day, the Center collects a set of observa-
tion demands from agents. Usually a demand can
be covered by a single image, but more complex
demands may arise, as we will see below. Each
demand is given a weight (a positive integer), re-
flecting the importance the requesting agent as-
signs to the satisfaction of the demand. The daily
task of the Center is, amongst others, to build the
imaging workload of the satellite for the next day,

by selecting the images to be acquired from the
set of agent demands.

Naturally, the exploitation of the satellite must
obey a set of physical constraints, such as time
window visibility constraints, minimum transition
times between successive image acquisitions, or
memory and energy management. Due to these
exploitation constraints, and due to the large
number of (possibly conflicting) demands, a set
of demands, each of which could be satisfied in-
dividually, may not be satisfiable as a whole on
a single day. All these physical constraints de-
fine the set of admissible allocations of images to
agents. The exploitation of an EOS must also
meet the following requirements:

– Efficiency: The satellite should not be under-
exploited.

– Equity: Each agent should get a return on in-
vestments that is proportional to its financial
contribution.

2.2.2 Modelling

Let us first consider the simple problem where
only one agent exploits the resource. In this case,
the allocation problem consists of selecting, each
day, an admissible sequence of images that will be
acquired by the satellite over the next day (and
allocated to the agent). This agent measures its
satisfaction by a utility function which may be
defined as the sum of the weights of the allocated
images. The efficiency requirement comes down
to a simple optimisation problem: the utility func-
tion of the agent must be maximised over the set
of admissible allocations (see Lemâıtre et al. [61]
for the description of some algorithms for solving
this mono-agent allocation problem).

We now turn to the case where several agents
exploit the satellite. For simplicity, we assume in
this paper that the agents have equal rights over
the resource (we may assume, for example, that
they have funded the satellite equally). Of course,
each agent wants to maximise its own utility func-
tion, but generally they are antagonistic: increas-
ing the utility of one agent can lead to decreas-
ing the utility of others. So a fair compromise
must be found, the realisation of which is the role
of a suitable preference aggregation mechanism.
Such mechanisms will be discussed in detail in
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Section 5. Here, the min function (egalitarian so-
cial welfare) fits our requirements, as it naturally
conveys the equity requisite: we try to make the
agent least happy as happy as possible (a refine-
ment of this approach is given by the so-called
leximin ordering; see Section 5.4).

As mentioned before, weights of demands are
freely fixed by agents. In order to be able to com-
pare individual utilities between agents, a com-
mon utility scale must be set and used; that is,
the same number should express the same level of
satisfaction. To this end, Lemâıtre et al. [59, 60]
have adopted an approach known as the Kalai-
Smorodinsky solution (see Section 5.6), whereby
individual utilities are compared relative to the
maximum utility that each agent can receive. It
should be noted that, unlike for auction problems,
there are no preemptive constraints in this ap-
plication: the same image could be requested by
several agents, and allocated to them all (i.e. re-
sources are sharable).

This application is also of interest because it of-
fers real-word examples of dependencies between
demands. As a first example, a request may
involve a pair of stereoscopic images; receiving
only one image would result in a poor satis-
faction level for the agent. A second example
comes from the fact that, for earth areas situ-
ated in high latitudes, several images of the same
area can be taken from distinct angles during the
same day. Consider a stereoscopic demand con-
cerning such an area, and suppose that it could
be photographed from two angles. Let o11 and
o12 be the pair of stereoscopic images from an-
gle 1, o21 and o22 the images from angle 2.
The demand can be quite naturally formulated
as (o11 ∧ o12) ∨ (o21 ∧ o22).

To sum up, our EOS multiagent fair resource al-
location problem can be formally stated in the fol-
lowing way. Agents express their (weighted) de-
mands as simple logical propositions. An agent’s
individual utility is the sum of the weights of the
satisfied demands. The global utility is an ag-
gregation of normalised individual utilities, the
aggregation function being the min function (or,
better, the leximin ordering).

2.3 Manufacturing Systems

Since the second half of the 20th century, the or-
ganisation of mass production has been shifting

towards flexible manufacturing and customised
products. From a technological point of view,
it has been observed that current manufacturing
systems (e.g. computer-integrated manufacturing
architectures) have several drawbacks, in partic-
ular excessive rigidity and centralisation [50, 71].
Furthermore, future manufacturing systems are
expected to be characterised by globally dis-
tributed production units, small quantities of a
large variety of products, the provision of individ-
ual solutions tailored to each customer’s specific
needs, and concurrent execution of all the activi-
ties in the manufacturing process [95].

2.3.1 Problems and Requirements

Future manufacturing systems therefore require
coordination amongst production units and it is
expected that rigid, static, and hierarchical manu-
facturing systems will give way to systems that
are more adaptable to rapid change [15]. In order
to overcome the identified problems with current
manufacturing systems and prepare them for the
expected future scenarios, the new generation of
systems must possess such attributes as decentral-
isation, distribution, autonomy, adaptability, and
incomplete information handling [88].

In manufacturing, the term resource allocation
is usually synonymous for task scheduling. Fur-
thermore, the term resource is understood as a
physical resource, i.e. a machine, of the manu-
facturing plant. One of the problems in this area
is that a task is a step of a production plan for
a specific order (e.g. manufacture 100 chairs of
type P12-5), and there are usually dependencies
between tasks that must be obeyed (e.g. operation
“drill hole 2” must be done before “cool surface”
but after “drill hole 1”).

To further complicate things, the tasks involved
in a production plan will probably be done on dif-
ferent production resources, thus creating a net-
work of dependencies amongst resources.

One issue in the manufacturing area is that the
schedule itself is only valid until the first distur-
bance (e.g. machine or tool breakdown, rush or-
der, etc.). Since manufacturing control and exe-
cution is a real time application, the need to find
a feasible solution is much greater than to find
one that is optimal. The system as a whole must
reach a stable and feasible schedule without too
much interruption of the shop floor.
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2.3.2 Manufacturing and Agents

Physically, a manufacturing system involves sev-
eral resources (numeric control machines, robots,
automated guided vehicles, conveyors) and sev-
eral tasks can be carried out at the same time.
The number and configuration of these may
change of the lifetime of the system. Since the
manufacturing process is dynamic (e.g. suppli-
ers and consumers in a supply chain may change
many times) it is impossible to know the exact
structure or topology of the system in advance.
The number of products and orders, as well as
different alternative production routes, account
for the highly complex nature of manufacturing
systems.

All of the above make the design of manu-
facturing systems an excellent candidate for the
application of agent-based technology. In many
implementations of multiagent systems for manu-
facturing scheduling and control, the agents
model the resources of the plant and the schedul-
ing and control of the tasks is done in a dis-
tributed way by means of cooperation and coor-
dination of actions amongst agents [15, 53, 72].
As such, manufacturing scheduling and control
touches the areas of distributed planning and dis-
tributed artificial intelligence. Nonetheless, there
are also approaches that use a single agent for
scheduling (usually with a well-known centralised
scheduling algorithm) that dictates the schedules
that the resource agents will execute [92]. The
rationale for modelling resources as agents is to
better mimic the actual real-world environment
and to allow for the modelling of the character-
istics of each resource (e.g. available operations,
own agenda of tasks to execute, cost of performing
each operation, etc.)

When responding to disturbances, the dis-
tributed nature of multiagent systems can also be
a benefit to the rescheduling algorithm by involv-
ing only the agents directly affected, without dis-
turbance to the rest of the community that can
continue with their work. Typical approaches to
rescheduling include the removal of a late order,
reallocation of low priority orders to make room
for rush orders, shifting of tasks from one resource
to a similar one, etc.

An example for a MARA system for manu-
facturing control is the Fabricare prototype
suite [89]. This a multiagent system for dynamic

scheduling of manufacturing orders. The agents
are modelled as extended logic programs with the
ability to handle negative and incomplete knowl-
edge [88]. The system is very dynamic in what
concerns its agents, i.e. resource agents depend
on the system description file; task agents depend
on the existing tasks (dynamic events). Each ne-
gotiation uses the set of agents that are present
and available at that time, thus giving the sys-
tem a high degree of adaptability to the dynamic
nature of the manufacturing arena.

2.4 Grid Computing

Perhaps one of the most pressing applications for
MARA techniques is grid computing [40]. It is
true that there are functioning systems for grid
resource allocation, but these largely operate in
benevolent, cooperative subnets where partici-
pants know and trust one another and there is
typically no charge for the utilisation of resources,
although perhaps some artificial accounting sys-
tem is applied. Such frameworks are exactly what
is needed in order to test out many grid mid-
dleware functions where the objective is to see a
job executed across a range of grid resources. In
many respects, grid resource allocation—as dis-
tinct from scheduling—and payment for resource
usage is an orthogonal problem to the actual pro-
cessing of a job.

However, at some stage, if the vision of grid
computing as a commodity not unlike energy is to
become reality, then resource allocation, payment
and job processing will have to come together and
current research in MARA technology aims to lay
the foundations for this union.

2.4.1 Scalability Issues

If the benevolent, cooperative network of mutu-
ally trusting participants is discarded, the client
is faced with the problem of piecing together a
range of disparate resources that are required to
complete the processing of a particular job. The
parallels with markets, and especially commodity
markets, as efficient (by economic measures) re-
source allocation mechanisms in the presence of
large numbers of traders and where possibly com-
plex packages of goods are required, are striking.
Grid networks have not yet become so large as to
make such approaches essential, but that time is
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not far off, even in cooperative scientific research
networks, if one considers the grid that is foreseen
to support the analysis of results emerging from
CERN’s Large Hadron Collider [17].

The issues could be seen as a function of scale:
Existing grids can handle resource allocation
through single centralised mechanisms and (eco-
nomic) efficiency of allocations may not be impor-
tant. As grids become larger with a wider range
of resources, and used for broader classes of tasks,
centralised allocation and inefficient allocation of
resources are likely to become less tolerable. In re-
sponse to this, various approaches need to be eval-
uated and contrasted under carefully controlled
conditions, from centralised systems seeking op-
timal allocation to distributed mechanisms in-
volving bilateral negotiation. Intuition—which
should of course be treated with circumspection—
suggests that neither of these can be entirely sat-
isfactory, but each may act in different ways as
benchmarks against which to measure the rest:

– Centralised systems relying on combinatorial
auction clearing algorithms can deliver opti-
mal allocations, but are currently limited by
computation costs to hundreds of items and
thousands of bids [81].

– Distributed systems relying on bilateral ne-
gotiation between consumer and service
provider for each component—that is, the
consumer constructs their own bundle—will
almost certainly scale, but the results are
much less likely to be “good”. The risks in-
herent in such an approach are significant:
The order in which to undertake negotiation,
the possibility that contracting for one re-
source constrains the choice of subsequent re-
sources, perhaps leading to incomplete bun-
dles, the difficulty in assessing the quality of
a bundle or indeed the valuation of a bundle
are all surrounded by uncertainty.

Implicit in both scenarios is that a client will need
to combine a range of resources from the grid in
order to carry out their computation.

2.4.2 Market-based Allocation

In between the two extremes of centralised and
distributed lie the many variants of market-
based allocation. And given the essentially de-
centralised nature of (geographically dispersed)

grids, potentially with many administrative cen-
tres and relatively weak control over individual
nodes, the grid seems well suited to market-based
schemes, where the twin benefits of reputation
and decentralised negotiation can facilitate the
trading of computational resources.

Among the different market schemes that ex-
ist, one approach is to mimic ideas seen in com-
modity trading [48]. While analogies are both
risky and seductive, there do seem to be sufficient
parallels to make more detailed exploration—and
simulation—desirable. Commodity markets are a
blend of centralised and distributed in that there
are many commodity markets around the world,
such that at any one time a significant subset
are trading, giving a 24/7 market, but within
any given market trades take place through bilat-
eral mechanisms, typically continuous double auc-
tions. However, a trader may participate in more
than one market at a time, giving rise to com-
munication between markets as to current valua-
tion trends along with the publication of “closing
prices”.

But, commodity markets typically trade in lots
of a single kind and depending on the market,
traders may be direct buyers and sellers with no
middle-men or market-makers. Economic analy-
ses and simulations indicate that market-makers
increase liquidity and enable the market to remain
(economically) efficient at lower levels of partici-
pation than in the presence of buyers and sell-
ers alone [7]. Furthermore, in the case of bun-
dles (lots of varying quantities of several kinds
of goods), market-makers become repositories of
market memory, learning what bundles work (po-
tentially a combination of reputation and fit of
resources) and identifying trends as new kinds of
bundles emerge. Thus they become more than
mediators between buyer and seller, fully justi-
fying the epithet of “market-maker”. A trading
framework such as this seems highly applicable to
grids and resource allocation within grid systems.

3 Types of Resources

A central parameter in any resource allocation
problem is the nature of the resources themselves.
In this section, we give a brief overview of the (ab-
stract) properties of different types of resources.
Some of these properties are characteristics of the
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resources (such as being perishable rather than
static, or continuous rather than discrete), while
others are better understood as being characteris-
tics of the chosen allocation system (for instance,
whether or not a given item is sharable amongst
several agents will typically depend on the allo-
cation procedure rather than on characteristics of
the item itself).

3.1 Continuous vs. Discrete

A resource may be either continuous (e.g. energy)
or discrete (e.g. fruit). This “physical” property
will typically influence how the resource is being
traded, although this need not be the case. For
instance, a continuous resource will typically be
regarded as being (infinitely) divisible. Still, in
a particular negotiation setting, it may only be
possible to buy or sell a certain quantity of such a
continuous resource as a whole. Individual units
of a discrete resource, however, are always indi-
visible (an apple that can be sold in small pieces
would not count as a discrete resource).

In a setting with several continuous resources,
a bundle can be represented as a vector of non-
negative reals (or, alternatively, numbers in the
interval [0, 1] to denote the proportion of a par-
ticular resource owned by the agent receiving the
bundle). Bundles of discrete resources can be rep-
resented as vectors of non-negative integers. If
there is just a single item of each resource in the
system, then vectors over the set {0, 1} suffice.

A continuous resource may be discretised by
dividing it into a number of smaller parts to be
traded as indivisible units. For instance, rather
than treating 10.000 litres of orange juice as a
truly continuous resource that could be divided
into ever smaller subparts, we may agree to nego-
tiate over 200 units of 50 litres each. This means
that methods developed for discrete MARA are
often also applicable in the continuous case (al-
though they may not be as efficient as methods
specifically tailored to continuous resources).

The allocation of continuous resources (often
just a single continuous resource), has been stud-
ied in depth in the classical literature in Eco-
nomics. More recent work in Computer Science
and Artificial Intelligence, on the other hand, has
often focussed on discrete resources. In this pa-
per, we also concentrate on discrete resources.

3.2 Divisible or not

As discussed above, resources may treated as be-
ing either divisible or indivisible. While being ei-
ther continuous or discrete is a property of re-
sources themselves, the distinction between divis-
ible and indivisible resources is made at the level
of the allocation mechanism. In this survey, we
concentrate on indivisible resources.

3.3 Sharable or not

A sharable resource can be allocated to a num-
ber of different agents at the same time. An ex-
ample of such sharable resources can be found
in the context of the Earth Observation Satellite
application discussed earlier (see Section 2.2): A
single picture taken by the satellite can be allo-
cated to several different agents (no preemptive
constraints). The canonical case, however, con-
siders resources as being non-sharable and in the
rest of this paper we also make this assumption.

3.4 Static or not

A resource may be consumable in the sense that
the agent holding the resource may use up the
resource when performing a particular action. For
instance, fuel is consumable. Also, resources may
be perishable, in the sense that they may vanish
or lose their value when held over an extended
period of time. Food is a classical example of a
perishable resource.

We call resources that do not change their
properties during a negotiation process static re-
sources. In general, resources cannot be assumed
to be static. In MARA however, it is often as-
sumed that they are (that is, that resources are
neither consumable nor perishable). The ratio-
nale behind this stance is the fact that the ne-
gotiation process is not really concerned with the
actions agents may undertake outside the process
itself. That is, even if a resource is either con-
sumable or perishable, we can often assume that
it remains static throughout a particular negoti-
ation process. In this paper, in particular, we
concentrate on static resources.

3.5 Single-unit vs. Multi-unit

In a multi-unit setting it is possible to have many
resources of the same type and to refer to these
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resources using the same name. Suppose, for in-
stance, there are a number of bottles of cham-
pagne available in the system, but that agents
cannot distinguish between these bottles. In a
single-unit setting, on the other hand, every item
to be allocated is distinguishable from the other
resources and has a unique name.

The differentiation between single- and multi-
unit settings is a matter of representation. Any
multi-unit problem can, in principle, be trans-
formed into a single-unit problem by introducing
new names for previously indistinguishable items.
Vice versa, clearly, any single-unit problem is also
a (degenerate) multi-unit unit problem. An im-
portant advantage of working within a multi-unit
setting is that it may allow for a more compact
way of representing both allocations and the pref-
erences of agents over alternative bundles. On
the downside, a richer language (variables rang-
ing over non-negative integers, rather than binary
values) is required in this case.

3.6 Resources vs. Tasks

At a sufficiently high level of abstraction, a task
allocation problem can be reduced to a resource
allocation problem. Indeed, tasks may be con-
sidered resources to which agents assign a nega-
tive utility. However, an important characteristic
of tasks as opposed to resources is the fact that
tasks are often coupled with constraints regard-
ing their coherent combination. For instance, a
task may require the achievement of another task
as a precondition. In this respect, treating allo-
cations merely as assignments of bundles of items
to agents (without associated time constraints, for
instance) would be too simple a model.

In this paper, however, we concentrate on gen-
eral resource allocation problems rather than is-
sues that are specific to task allocation (and ex-
ception is our discussion in Section 2.3).

4 Preference Representation

Preferences express the relative or absolute satis-
faction of an individual when faced with a choice
between different alternatives.2 In the context of

2This is the decision-theoretic view of preferences,
shared by many communities, from mathematical eco-
nomics to multi-criteria decision making.

MARA, these alternatives are the different poten-
tial allocations of resources, or more concretely,
the bundle of resources received by an agent for
each of the alternative allocations.

A preference structure represents an agent’s
preferences over a set of alternatives X. There
are several choices that can be made regarding
the definition of a mathematical model for pref-
erence structures (this is an important question
that has been discussed by researchers in decision
theory for a long time). We can distinguish four
families of preference structures:

– A cardinal preference structure consists of an
evaluation function (generally called utility)
u : X → Val , where Val is either a set of
numerical values (typically, N, R, [0, 1], R+,
etc.), or a totally ordered scale of qualita-
tive values (e.g. linguistic expressions such
as “very good”, “good”, etc.). In the former
case the preference structure is called quan-
titative, in the latter it is called qualitative.

– An ordinal preference structure consists of a
binary relation on alternatives, denoted by
�, which is reflexive and transitive (and usu-
ally, although not necessarily, complete).3

We write x ≺ y (strict preference) if and only
if x � y but not y � x, and x ∼ y (indiffer-
ence) if and only if both x � y and y � x.

– A binary preference structure is simply a par-
tition of X into a set of good and a set of
bad states. A binary preference structure can
be seen as both a (degenerate) ordinal pref-
erence structure and a (degenerate) cardinal
preference structure.

– A fuzzy preference structure is a fuzzy rela-
tion over X, i.e. a function µ : X×X → [0, 1].
µ(x, y) is the degree to which x is preferred
over y. Fuzzy preferences are more general
than both ordinal and cardinal preferences.

Since fuzzy and qualitative preferences have not
been used much as far as resource allocation is
concerned, we are going to neglect these in this

3Some work in preference modelling has also addressed
non-transitive preference relations, arguing that humans
often exhibit non-transitive preferences—for the sake of
brevity we will omit this issue here.
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survey, and focus on quantitative and ordinal
preferences instead.

Observe that we have three “levels” for prefer-
ence modelling, according to the possible opera-
tions allowed by the preference structure: Ordinal
preferences allow only for comparing the satisfac-
tion of a given agent for different alternatives, but
cannot express preference intensity and do not
allow for interpersonal comparison of preferences
(that is, expressing statements such as “agent i is
happier with x than agent j with y”). Qualitative
preferences do allow for interpersonal comparison
of preferences, and can express a weak form of
intensity, but they do not allow for any “metric”
use of preferences such as computing the differ-
ence between two utility degrees so as to allow
for a monetary compensation—while quantitative
preferences do.

Note that any cardinal preference induces an
ordinal preference, namely for a utility function u
we can define the complete weak order �u given
by x �u y if and only if u(x) ≤ u(y).

The explicit representation of a preference
structure consists of the data of all alternatives
with their associated utilities (for cardinal prefer-
ences) or the whole relation � (for ordinal pref-
erences). These representations have a spatial
complexity in O(|X|) for cardinal structures and
O(|X|2) for ordinal structures, respectively.

In many real-world domains, the set of alter-
natives X is the set of assignments of a value to
each of a given set of variables. In such cases, the
alternatives are exponentially many. It is not rea-
sonable to ask agents to report their preference
in an explicit way when the set of alternatives
is exponentially large, as this amounts to listing
the exponentially many alternatives together with
their utility assessment or their ranking. This is
the case, in particular, when alternatives are allo-
cations of resources (assignments of resources to
agents). For this reason, the MARA project needs
languages for preference representation aiming at
enabling a succinct representation of the descrip-
tion of the problem, without having to enumer-
ate a prohibitively large number of alternatives.
Such preference representation languages often al-
low for a much more concise representation of the
preference structure than an explicit enumeration.

In this section, we are going to give a brief
survey of languages for preference representation.

We begin by discussing several ways of represent-
ing compactly quantitative preferences (that is,
utility functions), including languages specifically
introduced for combinatorial auctions, and then
we move on to languages for representing ordinal
preferences.

4.1 Quantitative Preferences

Let R = {r1, . . . , rm} be a set of indivisible re-
sources. A quantitative preference structure for
a resource allocation problem is a utility function
u : 2R → Val mapping bundles of resources (sub-
sets of R) to numerical values (such as the reals).
By defining utilities over bundles, we assume that
the preferences of agents are free of so-called al-
locative externalities. That is, the value that an
agent assigns to a bundle R does not depend on
the allocation of the remaining resources amongst
the other agents.

In the case of task allocation (as opposed to re-
source allocation), we may model the preferences
of agents using cost functions rather than util-
ity functions. At the level of abstraction being
considered in the present survey, there is no ef-
fective difference in the representation of utility
functions and cost functions. In the former case,
agents would usually aim at maximising their util-
ity, while in the latter case they would aim at
minimising their costs.

Next we are going to review several languages
for representing utility functions.

4.1.1 Bundle Enumeration

The most basic form of representing a utility
function is to enumerate the bundles to which
it assigns a non-zero value. That is, a utility
function u can be presented as the set of pairs
〈R, u(R)〉 with R those bundles of resources for
which u(R) 6= 0. We call this the explicit form, or
the bundle form.

The bundle form is obviously fully expressive in
the sense that any utility function may be so de-
scribed. A serious drawback, however, is that the
length of such descriptions will typically be ex-
ponential in the number of resources. This has
prompted researchers to develop more succinct
languages for utility representation.
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4.1.2 The k-additive Form

For some (but not all) utilities it is possible to ex-
ploit regularities in the function structure in or-
der to build succinct and efficiently computable
descriptions. Given k ∈ N, a utility function u is
said to be k-additive if and only if there exists a
coefficient αT for each set of resources T of size
at most k such that:

u(R) =
∑
T⊆R

αT

The coefficient αT represents the synergetic value
of owning all of the items in T together, beyond
the utility associated with any of its proper sub-
sets. If a utility function is presented in terms of
such coefficients, then we say that it is given in
k-additive form.

The k-additive form is also fully expressive, but
only in the sense that it can describe any utility
function provided k is chosen large enough (for
any k less than the overall number of resources
there are functions that cannot be represented).
It is typically considerably more succinct than the
simple bundles form (think of a function mapping
bundles to the number of items in a bundle), al-
though there are also counterexamples (such as
functions mapping only bundles with a single el-
ement to a non-zero utility value) [18].

In many application domains, it will be rea-
sonable to assume that utility functions are k-
additive with a relatively small value of k (which
would allow for a very succinct representation).
Indeed, the larger a bundle of resources, the more
difficult for an agent to estimate the additional
benefit incurred by owning all the resources in
that bundle together (i.e. beyond the benefit in-
curred by the relevant subsets).

The k-additive form of representing utility
functions is inspired by work in fuzzy measure
theory [47]. It has been introduced into the
MARA domain by Chevaleyre et al. [18] and, in-
dependently and in a combinatorial auction set-
ting, by Conitzer et al. [23].

4.1.3 Weighted Propositional Formulas

Many languages for compact preference represen-
tation make an explicit use of logic (for a survey of
such languages we refer to the work of Lang [57]).
The basic idea of logic-based preference represen-
tation for MARA is that each resource r can be

identified with a propositional variable pr, which
is true if the agent whose preferences we are mod-
elling owns the corresponding resource, and false
otherwise.4 That is, every bundle R corresponds
to a model. Agents can then express their prefer-
ences in terms of propositional formulas (or goals)
that they want to be satisfied. We write R |= G
to express that the goal G is satisfied in the model
corresponding to the bundle R.

The simplest (and prototypical) logical repre-
sentation of preferences simply consists of giving
a single propositional formula G (representing the
agent’s goal). The utility function uG generated
by G is extremely basic: uG(R) = 1 if R |= G,
uG(R) = 0 if R |= ¬G. One possible refine-
ment of this consists of considering a goal base
GB = {G1, . . . , Gn} and counting the number of
goals satisfied by R.

In a further refinement, goals are associated
with numerical weights, which tell how impor-
tant the satisfaction of the goal is considered to
be. Formally, the preferences of an agent are ex-
pressed by means of a finite set of such weighed
goals: GB = {〈G1, α1〉, . . . , 〈Gn, αn〉}, where each
αi is an integer and each Gi is a propositional for-
mula. For every bundle R, we define the penalty
of R as follows:

pGB (R) =
∑

{αi |R 6|= Gi} (1)

The penalty of R can be viewed as its disutility,
that is, uGB (R) = −pGB (R). Many other oper-
ators can be used, in place of the sum, for ag-
gregating weights of violated (or symmetrically,
satisfied) formulas [56].

4.1.4 Straight-line Programs

A further representation form for utility functions
is based on straight-line programs (SLPs). SLPs
may be viewed as directed acyclic graphs consist-
ing of two distinguished types of vertex: inputs
which are sources (have in-degree 0) and gates,
each of which has in-degree exactly 2. A sub-
set of the gates (with out-degree 0) are distin-
guished as the program outputs. In addition to
the graph structure an SLP is fully defined by as-
sociating a binary Boolean operation with each

4In a multi-unit setting (see Section 3.5), we would have
to consider atomic sentences such as x ≥ 50, signifying a
bundle with at least 50 units of type x.
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gate vertex. For an SLP, C, with m inputs, or-
dered as 〈x1, x2, . . . , xm〉 and p gates, a topolog-
ical labelling of the vertices assigns a unique in-
teger in the range [1,m + p], λ(v), to each ver-
tex of C in such a way that: λ(xi) = i; if v is
a gate with 〈w1, v〉 and 〈w2, v〉 edges in C then
λ(v) > max{λ(w1), λ(w2)}. A topological la-
belling may be efficiently computed for C using
depth-first search.

An SLP, C with inputs 〈x1, x2, . . . , xm〉 and
p gates, t of which are outputs labelled
〈s0, s1, . . . , st−1〉 computes its result by execut-
ing the program consisting of exactly m + p
lines, at each of which a single bit value (res(i))
is computed. Given an instantiation of the
inputs 〈α1, . . . αm〉, the ith line, li computes:
res(i) := αi if 1 ≤ i ≤ m; and res(j1)θires(j2)
if m + 1 ≤ i ≤ m + p, where θi is the binary
operation associated with the ith gate and whose
inputs are the vertices labelled j1 and j2. The
numerical value computed by C as a consequence
of a particular instantiation α of its inputs is
val(C,α) =

∑t−1
i=0 res(si) · 2i.

This model provides an alternative representa-
tion for utility functions, u : 2R → N by a suit-
able SLP, C: a subset S defines an instantiation
of the inputs via its m-bit characteristic vector
α(S); the value u(S) is then simply val(C,α(S)).
It is noted that, although this definition uses N as
the range, it is a trivial matter to extend to Z (al-
low an additional output to act as a sign bit) and
to Q (interpret the output bits as two groups, one
defining the numerator, the other the denomina-
tor). As with the bundle form, the SLP form has
the property of being fully expressive. In addi-
tion, however, there are the following advantages:

– The number of bits needed to encode utility
functions can be exponentially smaller than
that required in the bundle form.

– If the function u : 2Rm → Q is computable
by a deterministic Turing Machine in time
T , then u may be represented by an SLP, C
containing O(T log T ) lines.

The first of these is easily seen by considering the
function with value 1 if |S| is odd, and value 0 if
|S| is even: the number of bundles to be listed
is exactly 2m−1. The same function, however,
is described by the program with 2m − 1 lines
corresponding to the computation ⊕m

i=1 xi. The

second property is a consequence of the construc-
tions presented by Schnorr [85] and Fischer and
Pippenger [39]. These simulations are effective
(i.e. not simply existence arguments) and can be
efficiently implemented.

In principle, other “program-based” formalisms
can be defined, however, in order to be effective
it must be possible efficiently to validate that a
given bit-string does describe a syntactically cor-
rect program and to have an effective method of
determining the program output. For the SLP
approach above, both of these are satisfied, the
latter since the runtime of a given SLP is exactly
the number of program lines contained within it.

Extensive complexity-theoretic treatments of
the SLP model (described in its usual terminology
of combinational logic networks) may be found in
the monographs of Savage [84], Wegener [96] and
Dunne [28]. In the context of MARA, the SLP
form has been considered by Dunne et al. [32].

4.1.5 Bidding Languages

Bidding languages are used in combinatorial auc-
tions to allow agents to communicate their pref-
erences to the auctioneer.5 Preferences structures
here are valuation functions or, equivalently, pos-
itive and monotonic utility functions on 2R.

Bids are expressed as combinations of atomic
bids of the form 〈R, p〉, where p is the amount the
bidder is prepared to pay for the bundle R. Two
prominent bidding languages are the OR and the
XOR languages:

– The OR language is probably the most
widely used bidding language. Here the valu-
ation of a bundle is taken to be the maximal
value that can be obtained when computing
the sum over disjoint bids for subsets of the
bundle. For instance, a bid of the form

〈{a}, 2〉OR 〈{b}, 2〉OR 〈{c}, 1〉OR 〈{a, b}, 5〉

expresses that the bidder is willing to pay 2
for a alone, 2 for b alone, 5 for both a and b,
and 6 for the full set. Clearly, this language
is not fully expressive since it cannot repre-
sent subadditive utility functions (for exam-
ple, there is no way to specify that you would
only be prepared to pay 4 for the full set).

5Of course, strategic considerations may cause agents
not to report their true preferences, but this issue is not
relevant from the viewpoint of preference representation.
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– In the XOR language [80], atomic bids are as-
sumed to be mutually exclusive. In this case,
the valuation of a bundle is simply the high-
est value offered for any of its subsets. The
XOR language can express any (normalised)
monotonic utility function.

While the XOR language is more expressive than
the OR language, it can also prove to be far less
compact for certain types of preferences. For in-
stance, the utility function u(R) = |R| requires
an exponential number of atomic bids in the XOR
language, but only a linear number of OR bids.

Because the OR language is widely considered
a simple and natural bidding language, there have
been several attempts to extend its expressiveness
without requiring an exhaustive listing of XOR
bids. It is, for instance, possible to combine the
types of bids, and to thus to obtain OR-of-XOR
and XOR-of-OR bidding languages. For an ex-
tensive discussion of such languages we refer to
the review article by Nisan [68].

An interesting alternative is to simulate XOR
bids by means of OR bids. The idea is simply
to introduce “fake” resources (or phantom goods,
or dummy items), that have no function other
than making bundles mutually exclusive, because
the resource appears in both bundles [41]. For
instance, if one wanted to express that the set
{a, b, c} should be valued at 4, it would be pos-
sible to add the fake resource f to obtain both
〈{c, f}, 1〉 and 〈{a, b, f}, 5〉, and to bid in addition
on 〈{a, b, c}, 4〉. This language, known as the OR∗
bidding language (or OR with dummy items), is
as expressive as the XOR language.

4.2 Ordinal Preferences

Next we are going to discuss the representation of
ordinal preferences. Again, let R = {r1, . . . , rm}
be a set of indivisible resources. An ordinal pref-
erence structure � is a binary relation over 2R.
Here, logic-based languages play a central role
(see also our discussion of weighted propositional
formulas in Section 4.1.3).

4.2.1 Prioritised Goals

Prioritised goals are the ordinal counterpart to
weighted goals: instead of numerical weights at-
tached to goals (expressed as propositional for-
mulas), we have a priority relation on goals, from

which a preference relation on the set of bundles
can be drawn.

While some approaches make use of partial
priority preorders, most of them make the as-
sumption that the priority relation is complete.
When this is the case, then priorities on formu-
las can be expressed by a function r from in-
tegers to integers. A goal base is then a fi-
nite set of formulas with an associated function:
GB = 〈{G1, . . . , Gn}, r〉. If r(i) = j, then j is
called the rank of the formula Gi. By convention,
a lower rank means a higher priority. The ques-
tion is now how to extend the priority on goals to
a preference relation over alternatives. The fol-
lowing three choices are the most frequent ones:6

– best-out ordering [5]: R �bo
GB R′ iff

min{r(i) |R 6|= Gi} ≤ min{r(i) |R′ 6|= Gi}

– discrimin ordering [5, 14, 43]:
Let d(R,R′) = min{r(i) |R 6|=Gi & R′ |=Gi}.
R �dis

GB R′ iff d(R,R′) < d(R′, R) or
{Gi |R |= Gi} = {Gi |R′ |= Gi}

– leximin ordering [5, 58]:7

Let dk(R) = |{Gi |R |= Gi & r(i) = k}|.
R ≺lex

GB R′ iff there exists a k such that
dk(R) < dk(R′) and ∀j < k, dj(R) = dj(R′)
R �lex

GB R′ iff R ≺lex
GB R′ or ∀j, dj(R)=dj(R′)

Note that �lex
GB and �bo

GB are complete prefer-
ence relations while �dis

GB is generally not. We
moreover have the following chain of implications:
R ≺bo

GB R′ entails R ≺dis
GB R′ entails R ≺lex

GB R′.

4.2.2 Ceteris Paribus Preferences

In this language, preferences are expressed in
terms of statements like: “all other things be-
ing equal, I prefer these alternatives over those
other ones.” Formally, let C, G and G′ be three
propositional formulas and V a set of proposi-
tional variables including those occurring in G
and G′. The ceteris paribus desire C : G > G′[V ]
means: “when C is true, all irrelevant things be-
ing equal, I prefer G∧¬G′ to ¬G∧G′”, where the
“irrelevant things” are the variables that are not
in V . The preference relation induced by a set

6We are using the convention min(∅) = +∞.
7Not to be confused with (although related to) the lex-

imin ordering for the aggregation of individual preferences
in a society of agents presented in Section 5.4.
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of such preference statements is then the transi-
tive closure of the union of preference relations in-
duced by individual preference statements. This
language can also be extended so as to allow for
indifference statements.

An important sublanguage of ceteris paribus
preferences is the language of (binary) CP-
nets [9], which is obtained by imposing the fol-
lowing syntactical restrictions:

– Goals G and G′ are literals speaking about
the same propositional variable.

– The variables mentioned in the context C of
a preference statement about variable p must
belong to a fixed set, called the parents of p.

– For each variable p and each possible assign-
ment π of the parents of p, there is one and
only one preference statement C : p > ¬p or
C : ¬p > p such that π |= C.

Various extensions of CP-nets have been proposed
so as to be more expressive. For instance, TCP-
nets [12] are CP-nets with a dominance relation
between variables. Languages for cardinal prefer-
ence representation in the style of CP-nets have
been defined as well, for instance UCP-nets [8],
which are based on generalised additive indepen-
dence.

4.3 Discussion

At least five very important issues should be ad-
dressed when investigating preference representa-
tion languages:

– Elicitation: How hard is is to elicit preference
from an agent so as to obtain a statement
expressed in a given preference language L?

– Cognitive relevance: How close is a given lan-
guage L to the way in which humans would
express their preferences?

– Expressive power: Given a representation
language L, a relevant question is whether
L can express all preorders and/or all util-
ity functions, or only complete preorders, or
only a strict subclass of them, etc.

– Computational complexity: For a given lan-
guage L, what is the computational complex-
ity of comparing two alternatives, of deciding

whether a given alternative is optimal, or of
finding an optimal alternative?

– Comparative succinctness: Given two lan-
guages L and L′, determine whether every
preference structure that can be expressed in
L can also be expressed in L′ without a sig-
nificant (that is, supra-polynomial) increase
in size (in which case L′ is said to be at least
as succinct as L).

A detailed discussion of these issues in view of
all the different representation languages we have
covered would be beyond the scope of this survey.
We limit ourselves to a few indicative remarks.

With the exception of bidding languages, all
the languages for quantitative preferences pre-
sented above are fully expressive and we have
already discussed several examples of compara-
tive succinctness results for such languages. A
problem with quantitative preferences in general
is the well-known difficulty of eliciting numerical
preferences from agents. Ceteris paribus prefer-
ences, being rather close to human intuition and
comparatively easy to elicit, are interesting from
a cognitive point of view. However, they have
a high computational complexity in the general
case, and furthermore, they generally leave many
pairs of alternatives incomparable. As for pri-
oritised goals, their lack of expressive power (no
compensation allowed between goals) somewhat
limits their range of use.

5 Social Welfare

A typical objective in MARA is to find an alloca-
tion that is optimal with respect to a metric that
depends, in one way or another, on the preferences
of the individual agents in the system. The aggre-
gation of individual preferences can often be mod-
elled using the notion of social welfare as studied
in Welfare Economics and Social Choice Theory.
This view is in line with the widely used metaphor
of multiagent systems as “societies of agents”. For
instance, assuming that individual agents model
their preferences using utility functions mapping
bundles of resources to numerical values, the con-
cept of utilitarian social welfare, defined as the
sum of individual utilities, can be used to mea-
sure the quality of an allocation from the view-
point of the system as a whole. This is probably
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the most widely used interpretation of the term
“social welfare” in the multiagent systems litera-
ture [79, 97].

In Welfare Economics and Social Choice The-
ory, on the other hand, many different notions
of social welfare and related concepts have been
studied [2, 65, 86] and many of these are also ap-
plicable to MARA systems [33]. In the context
of an e-commerce application, our aim may be
to maximise the average profit generated by the
negotiating agents. In this case, utilitarian so-
cial welfare provides a suitable metric for assess-
ing system performance. In an application such
as that introduced in Section 2.2, where agents
need to agree on the access to an Earth Observa-
tion Satellite that has been jointly funded by the
owners of these agents, on the other hand, it is
important that each agent receives a fair share of
the common resource (possibly reflecting the size
of the financial contribution made by its owner).
In this case, average utility is clearly not a good
indicator of performance.

Generally speaking, before sending a software
agent into a system to negotiate on our behalf,
we would like to know under what (social) rules
that system operates. If these rules are not sat-
isfactory, we may not be prepared to agree to be
bound by the outcome of a negotiation.

In this section, we are going to review some of
the notions of social welfare proposed in the lit-
erature on Welfare Economics and Social Choice
Theory that are relevant to MARA. More specif-
ically, we are going to present and discuss differ-
ent approaches to defining a social welfare order-
ing, i.e. a mapping from the preferences of the
agents in a society to the “preferences” of society
as a whole. Good references in this area are the
Handbook of Social Choice and Welfare, edited by
Arrow, Sen and Suzumura [2], and the textbook
by Moulin [65]. We are going to cover preference
aggregation mechanisms for both ordinal and car-
dinal agent preferences (utility functions). Given
that every utility function also induces an ordinal
preference relation, any concept defined for ordi-
nal preferences also extends to the cardinal case.

5.1 Notation

Let A = {1, . . . , n} be a set of agents. Depending
on whether we assume cardinal or ordinal prefer-
ence structures, each of these agents i is equipped

with either a utility function ui or a preference
relation �i. An allocation P is a mapping from
agents to bundles of resources; that is, P (i) is the
bundle held by agent i in allocation P .

Our presentation is independent from the ex-
act nature of the resources used (divisible or not,
sharable or not, etc.). In most cases, we only
assume that agents have preferences over alterna-
tive allocations (only in the case of envy-freeness,
discussed in Section 5.7, we need to assume that
agents have preferences over alternative bundles).
For instance, P �i Q states that agent i likes allo-
cation P no more than allocation Q. Despite such
generality, it makes sense to think of preferences
as being defined over bundles of resources (as dis-
cussed in Section 4), i.e. to assume that there are
no allocative externalities. That is, P �i Q may
be considered an abbreviation for P (i) �i Q(i)
and ui(P ) is short for ui(P (i)).

5.2 Pareto Optimality

An allocation P is Pareto-dominated by another
allocation Q if and only if the following hold:

– P �i Q for all agents i ∈ A; and

– P ≺i Q for at least one agent i ∈ A.

An allocation is Pareto optimal (or Pareto effi-
cient) if and only if it is not Pareto-dominated
by any other allocation. That is, an allocation
is Pareto optimal if and only if it is not possible
to (strictly) improve the individual welfare of an
agent without making any of the others worse off.

Pareto optimality is generally regarded as the
most fundamental criterion for efficiency. Note
that the concept of Pareto optimality is purely or-
dinal: It does not require preferences to be numer-
ical, not even interpersonally comparable. Also
observe that the notion of Pareto dominance only
gives rise to a partial (rather than a complete)
ordering over alternative allocations.

5.3 Collective Utility Functions

If individual agents use utility functions to rep-
resent their preferences, then every allocation P
gives rise to a utility vector 〈u1(P ), . . . , un(P )〉.
A collective utility function (CUF) is a mapping
from such vectors to numerical values (e.g. the re-
als). Given that every allocation P determines a
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utility vector, a CUF may also be regarded as a
function from allocations P to numerical values.
Every CUF sw induces a social welfare ordering:
The allocation Q is socially preferred over alloca-
tion P if and only if sw(P ) ≤ sw(Q).

In the sequel, we list several examples for such
CUFs and indicate the kind of MARA applica-
tions where they may be useful.

5.3.1 Utilitarian Social Welfare

The utilitarian social welfare is defined as the sum
of individual utilities:

swu(P ) =
∑
i∈A

ui(P ) (2)

The utilitarian CUF is independent of the zeros
of individual utilities. It can provide a suitable
metric for overall (as well as average) profit in a
range of e-commerce applications.

5.3.2 Egalitarian Social Welfare

The egalitarian social welfare is given by the util-
ity of the agent that is currently worst off:

swe(P ) = min{ui(P ) | i ∈ A} (3)

This CUF offers a level of fairness and may be a
suitable performance indicator when we have to
satisfy the minimum needs of a large number of
customers. Fair division [13, 66, 101] is an impor-
tant area with many potential applications in the
field of MARA.

5.3.3 Nash Product

The Nash product is defined as the product of
individual utilities:

swN (P ) =
∏
i∈A

ui(P ) (4)

This notion of social welfare favours both in-
creases in overall utility and inequality-reducing
redistributions. In this sense, it may be regarded
as a good compromise between the utilitarian and
the egalitarian agendas. Another interesting as-
pect of this CUF is that it is independent of the
individual scales of agent utility functions.

Observe that the Nash product can only pro-
vide a meaningful metric of social welfare if all in-
dividual utilities are non-negative (or better even,
if they are all positive).

5.3.4 Elitist Social Welfare

The elitist social welfare is given by the utility of
the agent that is currently best off:

swel(P ) = max{ui(P ) | i ∈ A} (5)

The elitist CUF is clearly not a fair measure for
social welfare, but it can be useful in cooperation-
based applications where we require only one
agent to achieve its goals.

5.3.5 Rank Dictators

The egalitarian and the elitist CUFs are both
representatives of the family of k-rank dictator
CUFs, which we are going to define next. Let
(v↑P )k denote the kth smallest utility assigned to
allocation P by any of the agents in A (this is the
kth coordinate in the ordered utility vector for al-
location P ; see also Section 5.4). Then the k-rank
dictator CUF swk is defined as follows:

swk(P ) = (v↑P )k (6)

A special case of particular interest is the median
rank dictator CUF which is defined as swk with
k = n

2 in case n is even and k = n+1
2 in case n is

odd. Indeed, for certain applications the individ-
ual level of welfare on an agent that does at least
as well as half of the agents in the system but not
better than the other half may be considered as
suitable indicator for overall system performance.

5.4 The leximin Ordering

The leximin ordering is a social welfare ordering
that refines egalitarian social welfare. It works by
comparing first the utilities of the least satisfied
agents, and in case these utilities coincide, com-
pares the utilities of the next least satisfied agents,
and so on. This idea is formalised as follows.

Suppose agents use utility functions to express
their preferences. Then every allocation P gives
rise to an ordered utility vector v↑P , which is the
result of first computing ui(P ) for every agent i ∈
A and then arranging these values in ascending
order. For example, v↑P = 〈3, 5, 20〉 means that
the agent worst off enjoys utility 3, the one best
off utility 20, and the third one utility 5.

Then Q is leximin-preferred to P if and only if
there exists an integer k ∈ {1, . . . , n} such that:
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– (v↑P )i = (v↑Q)i for all i < k; and

– (v↑P )k < (v↑Q)k.

In other words, the leximin ordering is the lex-
icographic ordering over ordered utility vectors.
It favours the reduction of inequalities between
agents. An allocation is leximin-optimal if and
only if it is not leximin-preferred by any other
allocation.

5.5 Generalisations

It is possible to build families of parametrised
CUFs able to induce a continuous collection of
social welfare orderings, including most of those
defined above. Let us describe briefly two such
families. The first one is defined by the following
additive CUF [65]:

sw(p)(P ) =
∑
i∈A

g(p)(ui(P )) (7)

The parameter p is a real number, p 6= 0, and
g(p)(x) = sgn(p) · xp (where sgn(p) = 1 if p > 0
and sgn(p) = −1 if p < 0), with the convention
g(0)(u) = log u. Obviously, sw(1) measures utili-
tarian social welfare, and sw(0) induces the same
social welfare ordering as the Nash product. The
leximin ordering is the limit of the social welfare
ordering induced by sw(p) as p goes to −∞.

The other family of CUFs is a particular case
of what is known as ordered weighted averaging
(OWA) operators [99]. With the notation intro-
duced above, let us define:

sww(P ) =
∑
i∈A

wi · (v↑P )i (8)

Here, w = (w1, w2, . . . , wn) is a vector of real
numbers. Let us consider the vector w such that
wi = 0 for all i 6= k and wk = 1, then we have
exactly the k-rank dictator CUF (including the
egalitarian and the elitist CUFs, which are special
cases of rank dictators). Consider now the vector
w such that wi = αi−1, with α > 0, then the case
α = 1 corresponds to the utilitarian CUF, and the
leximin ordering is the limit of the social welfare
ordering induced by sww as α goes to 0.

5.6 Normalised Utility

It can often be necessary to normalise utility func-
tions before aggregating individual preferences us-
ing any of the methods presented here, because

many of them require individual utilities to be in-
tercomparable. For instance, if P0 is the initial
allocation of resources, then we may restrict our
attention to allocations P that Pareto-dominate
P0 and use the utility gains ui(P )−ui(P0) rather
than the utilities ui(P ) themselves as input to ei-
ther a collective utility function or the leximin
ordering.

A further normalisation step would be to eval-
uate an agent’s utility gains relative to the gains
it could expect in the best possible case. More
precisely, let us define the maximum individual
utility for each agent as:

ûi = max{ui(P ) |P ∈ Adm} (9)

Here, Adm is the set of admissible allocations.
That is, ûi is the utility that agent i could enjoy
if it were the sole agent exploiting the available
resources. Then we define the normalised indi-
vidual utility of an agent i as follows:

u′i(P ) =
ui(P )

ûi
(10)

Observe that max{u′i(P ) |P ∈ Adm} = 1, for
all agents i. In other words, the maximum nor-
malised utility is the same for all agents.

The optimum of the leximin ordering with re-
spect to normalised utilities is known as the Kalai-
Smorodinsky solution [66].

5.7 Envy-freeness

An allocation is envy-free if and only if each agent
is at least as happy with its share than it would
be with any of the bundles allocated to one of
the other agents [13]. That is, an allocation P
is envy-free if and only if P (j) �i P (i) holds for
all agents i and j. Envy-freeness is a property
that does not require the intercomparability of
the utilities of different agents.

If we require all items to be allocated, then an
envy-free allocation does not always exist (con-
sider, say, a an allocation problem with a single
resource that is desired by all agents in the sys-
tem). But even when not all items need to be
allocated, it is well-known that there are alloca-
tion problems for which there exists no allocation
that is both Pareto optimal and envy-free. One
could therefore aim at finding (Pareto optimal) al-
locations that would, at least, minimise the over-
all “degree of envy” as much as possible. There
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are several candidate definitions for minimal envy.
Two possible approaches would be the following:

– Minimise the number of envious agents.

– Minimise the average degree of envy (the dis-
tance to the most envied competitor) of all
envious agents.

5.8 Example

To exemplify some of the concepts introduced in
this section, consider a scenario with two agents,
1 and 2, and a set of three resources {a, b, c} that
are indivisible and cannot be shared. Suppose the
preferences of the two agents are represented by
the utility functions u1 and u2:

u1({a}) = 18 u1({b}) = 12 u1({c}) = 8
u2({a}) = 15 u2({b}) = 8 u2({c}) = 12

Furthermore, suppose u1 and u2 are additive, i.e.
ui(R) =

∑
r∈R ui({r}), and thereby fully speci-

fied by the above values. Let P be the allocation
giving a to 1 and b and c to 2.

Allocation P has maximal egalitarian social
welfare (18). Utilitarian social welfare, on the
other hand, is not maximal for this allocation (38
rather than 42) , and neither is elitist social wel-
fare (20 rather than 38).

P is Pareto optimal as well as leximin-optimal,
but not envy-free, since agent 1 would be hap-
pier with the share of 2 than with its own. In
fact, there is no allocation that would be both
Pareto and and envy-free for this problem. On
the other hand, for the slightly different problem
where u1({a}) = 20 instead of 18 (leaving the rest
unchanged), allocation P would be both Pareto
optimal and envy-free.

5.9 Welfare Engineering

The insight that very different notions of social
welfare may be appropriate for different applica-
tions of MARA has provided the impetus for the
development of the Welfare Engineering frame-
work [19, 33], which addresses two issues:

– the systematic choice of suitable social wel-
fare orderings for a given application of
MARA (and possibly the application-driven
design of new orderings); and

– the design of appropriate rationality criteria
and social interaction mechanisms for nego-
tiating agents in view of different notions of
social welfare.

By “appropriate” we mean criteria and mecha-
nisms that ensure the convergence of the negotia-
tion process to an allocation that is optimal with
respect to the chosen social criterion (see also Sec-
tion 6.4). Of course, depending on the application
in question, such criteria need to be balanced with
the autonomy requirements of individual agents.

An example for the first aspect of Welfare Engi-
neering would be the elitist collective utility func-
tion discussed earlier, which seems unethical for
human society, but it may be just the right per-
formance indicator for a distributed computing
application where several agents are working to-
wards their own goals, but the system designer is
only interested in (at least) one of them achieving
their objective as quickly as possible. This aspect
of Welfare Engineering may be characterised as
“welfare economics for artificial agent societies”.

An example for the second aspect would be the
following convergence result: To achieve Pareto
optimal outcomes in negotiation without mone-
tary side payments, ask agents to negotiate mu-
tually beneficial deals involving any number of
agents or resources, but also to participate in
deals that do at least not lower their own level
of utility [35]. This aspect of Welfare Engineer-
ing can be summarised as “inverse welfare eco-
nomics”, alluding to the characterisation of mech-
anism design as “inverse game theory” [70].

6 Allocation Procedures

Generally speaking, the allocation procedure used
to find a suitable allocation of resources could be
either centralised or distributed. In the centralised
case, a single entity decides on the final allocation
of resources amongst agent, possibly after having
elicited the preferences of the other agents in the
system. Typical examples for the centralised ap-
proach are combinatorial auctions [24]. Here the
central entity is the auctioneer and the report-
ing of preferences takes the form of bidding. In
truly distributed approaches, on the other hand,
allocations emerge as the result of a sequence of
local negotiation steps. Such local negotiation is
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often restricted to bilateral trading as in the clas-
sical Contract-Net approach [87], but systems al-
lowing for multilateral exchanges of resources be-
tween more than two agents are also possible.

A comprehensive survey on allocation proce-
dures for MARA would be beyond the scope of
this paper. Any such survey would have to ad-
dress at least the following three issues:

– Protocols: At this level, we need to address
ontological issues (what types of deals are
possible?) and devise communication pro-
tocols accordingly (what messages do agents
have to exchange to agree on one such deal?).

– Strategies: When designing individual
agents, we need to devise strategies for agents
that allow them to best exploit a given ne-
gotiation protocol. This can also provide
feedback to the first level: Where possible,
protocols should be designed in such a way
that they provide incentives to the negoti-
ating agents to adopt a particular desirable
profile of behaviour (mechanism design).

– Algorithms: At this level, we need to pro-
vide algorithms to solve the computational
problems faced by agents when engaged in
negotiation. This includes both algorithms
to decide how to respond to a proposal in
a distributed negotiation scenario and win-
ner determination algorithms for combinato-
rial auctions. Again, this level may provide
feedback to the other two levels: If a partic-
ular computational problem proves too hard
to be solved in a reasonable amount of time
then this may call for a simplification of the
negotiation protocol (or strategy).

In this paper, we concentrate on the first of these
issues. The most fundamental question to con-
sider before devising a protocol for a MARA sys-
tem is whether to adopt a centralised or a dis-
tributed design. We therefore start with a short
discussion of the respective merits and draw-
backs of centralised and distributed approaches
to MARA. This is followed by an introduction
to protocols for combinatorial auctions and an
overview of the Contract-Net and related proto-
cols for distributed resource allocation. Finally,
we make a connection to our discussion of social

welfare measures in Section 5 and review a num-
ber of results concerning the convergence to a so-
cially optimal allocation for different protocols in
the distributed setting.

6.1 Centralised vs. Distributed

Both the centralised and the distributed approach
to MARA have their advantages and disadvan-
tages. Possibly the most important argument
in favour of auction-based mechanisms concerns
the simplicity of the communication protocols re-
quired to implement such mechanisms. Another
reason for the popularity of centralised mecha-
nisms is the recent push in the design of power-
ful algorithms for combinatorial auctions that, for
the first time, perform reasonably well in prac-
tice [41, 80]. Of course, such techniques are, in
principle, also applicable in the distributed case,
but research in this area has not yet reached the
same level of maturity as for combinatorial auc-
tions. An important argument against centralised
approaches is that it may be difficult to find an
agent that could assume the role of an “auction-
eer” (for instance, in view of its computational
capabilities or in view of its trustworthiness).

The distributed model seems also more natural
in cases where finding optimal allocations may be
(computationally) infeasible, but even small im-
provements over the initial allocation of resources
would be considered a success. Step-wise im-
provements over the status quo are naturally mod-
elled in a distributed negotiation framework.

6.2 Auction Protocols

Auctions [24, 54, 55, 94, 98] are centralised mech-
anisms for the allocation of goods amongst sev-
eral agents. Agents report their preferences and
wait for the final allocation to be made by the
auctioneer (whether there is an initial allocation
of goods, as in combinatorial exchanges, or not,
as in regular combinatorial auctions). The act of
reporting preferences is called bidding and, natu-
rally, agents are not required to reveal their true
preferences during bidding, but they may submit
whatever bid(s) they believe to best serve their
own interests.

Bidding may be public (open-cry) as in the
well-known English auction model or private
(sealed bids). In the case of open-cry bidding,
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we can further distinguish between ascending bids
(English auction) and descending bids (Dutch
auction) [94]. In combinatorial domains, which
is what we are interested in here (i.e. there are
many goods and agents can submit bids for differ-
ent combinations of goods), typically, most auc-
tion protocols foresee only a single round of bid-
ding using sealed bids. The bidding language (see
Section 4.1.5) determines what types of bids are
admissible (and how to interpret them).

The auction protocol also specifies which agent
would be awarded which goods, based on the bids
received in time, and what price they should pay
for the bundles allocated to them. In some cases,
this decision can be left entirely to the auctioneer
(who will seek to maximise her revenue). In other
cases, it is important that the auctioneer follows
the rules specified by the protocol, as these rules
have been designed in such a way as to provide
incentives to the bidders to bid truthfully. This is
the case for the Vickrey auction model [94], and
its extensions to combinatorial scenarios, where
the winning agents pay less then the prices they
specified in their bids.

For an extensive review of different auction
models for resource allocation in combinato-
rial domains we refer to the forthcoming book
on Combinatorial Auctions, edited by Cramton,
Shoham and Steinberg [24], and the review ar-
ticle on the same topic by Kalagnanam and
Parkes [54].

6.3 Negotiation Protocols

We now give a brief overview of some of the pro-
tocols developed for negotiation over resources in
a distributed setting.

6.3.1 Contract-Net

Perhaps the most popular negotiation protocol is
the Contract-Net protocol [87]. Although the pro-
tocol was primarily designed for task allocation,
it is also perfectly suited to MARA. The protocol
consists in four interaction phases, involving two
roles (manager and bidder):

– Announcement phase: The manager adver-
tises the resource to a number of partner
agents (the bidders).

– Bidding phase: The bidders send their pro-
posals to the manager.

– Assignment phase: The manager elects the
best bid and assign the resource accordingly.

– Confirmation phase: The elected bidder con-
firms its intention to obtain the resource.

Any agent can initiate an interaction following the
protocol by assuming the adequate role. The pro-
tocol is really a one-to-many protocol, leading to
the assignment of a single task (or resource) to a
single contractor (that is, the resulting deal is a
one-to-one agreement regarding a single item).

6.3.2 Extensions

Many different extensions to this protocol have
been proposed and we briefly review some of these
here. The TRACONET system developed by
Sandholm [77], for instance, uses a variant of the
classical Contract-Net protocol to allow negotia-
tion over the exchange of bundles of resources.

Golfarelli et al. [46] have proposed an exten-
sion where the bidders have no explicit mech-
anism for utility transfer (in other words, they
cannot use money). The first phase remains the
same as in the original Contract-Net: the man-
ager announces a (bundle of) resource(s). But
the protocol is based on exchanges: instead of
bidding money, the agents will bid for one or
more resources they are interested in exchanging.
This extension allows agents to agree on swap-
ping resources (rather than buying them from
each other).

Sousa et al. [89] have designed a version of the
Contract-Net protocol where bidders first propa-
gate constraints between them in order to guar-
antee the coherence of different operations related
to the same task.

6.3.3 Concurrent Contract-Net

As pointed out by Aknine et al. [1], when many
managers negotiate simultaneously with many
contractors, using the Contract Net protocol can
lead to unsatisfactory results. In particular, be-
cause contractors are required to answer a single
bid at a time, they may miss some contracts. To
overcome this, they have proposed an extension
to in which a pre-bidding and a pre-assignment
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phase are added before the final bidding and as-
signment phase of classical Contract-Net proto-
cols. During the pre-bidding and pre-assignment
phases, which can last a long time, agents pro-
pose temporary bids and managers temporarily
accept (or reject) these bids. These new phases
have several positive effects:

– After a deal has been temporarily accepted, if
the manager receives a better offer, this deal
can be turned into temporarily rejected offer.
It turns out that when many negotiations are
conducted simultaneously, by delaying the fi-
nal acceptance, better deals (from the man-
ager’s point of view) may be negotiated.

– Contractors can modify their offers many
times by making temporary offers. If the con-
tractor receives a better new offer from an-
other manager, it can modify its temporary
bids before sending a definitive bid.

– The pre-bidding phase may be quite long.
This has the positive effect of reducing the
risk of decommitment.

An alternative way to tackle this latter problem is
to allow agents to decommit, but to apply penal-
ties when they do so. This route has been followed
in the levelled commitment approach proposed by
Sandholm and Lesser [82].

6.4 Convergence Properties

As discussed earlier, once a particular negotiation
protocol has been fixed, we need to devise strate-
gies for the agents using that protocol. Work in
this area is often of a game-theoretical nature.
A different line of research has analysed how the
negotiation behaviour of individual agents affects
the quality of the overall distribution of resources
(with respect to some of the social welfare mea-
sures introduced in Section 5) by abstracting away
from the details of individual negotiation strate-
gies [35, 78].

For instance, a rational agent may be defined as
an agent that will only agree to deals that result in
a positive payoff for itself. That is, a set of ratio-
nal agents will only agree on mutually beneficial
deals. Which of the possibly many mutually ben-
eficial deals agents will actually agree on depends
on the concrete strategies they use, and overly ag-
gressive negotiation strategies may even prevent

agents from identifying any mutually beneficial
deal at all [67]. However, in cases where it is ad-
missible to assume that agents will agree on some
deal meeting certain rationality criteria (such as
resulting in a strictly positive payoff for every-
one involved) whenever such a deal exists, it is
sometimes possible to prove so-called convergence
properties of a negotiation framework.

For instance, in the context of negotiation over
finitely many indivisible resources, an important
result, due to Sandholm [78], states that any se-
quence of deals that are mutually beneficial will
eventually result in an allocation with maximal
utilitarian social welfare, provided that agents
can use monetary side payments to compensate
their trading partners for otherwise disadvanta-
geous deals (and each agent’s payoff is linear in
the amount of money received). That is, there
can be no infinite sequence of mutually beneficial
deals, and if agents keep on making such deals the
system will converge to an allocation that max-
imises the sum of individual utilities. A similar
result states that any sequence of mutually ben-
eficial deals without side payments will converge
to a Pareto optimal allocation [35].

An important caveat is that these results apply
to negotiation settings where agents can agree on
truly multilateral deals: A single deal may involve
any number of agents (as well as any number of
resources). Decomposing such a multilateral deal
into a sequence of bilateral deals is not always pos-
sible, because some of the bilateral deals making
up the overall deal may not be mutually benefi-
cial to both agents. Hence, myopic agents that
require a positive payoff for every single deal they
take part in will not accept such a deal.

Given the difficulty of implementing such gen-
eral deals, it is important to understand under
what circumstances sequences of structurally sim-
ple deals suffice to guarantee convergence to a so-
cially optimal allocation of resources. Recent re-
sults in this area show that mutually beneficial
deals with side payments that involve only a sin-
gle resource each (and thereby only two agents
at a time) suffice to reach allocations with maxi-
mal utilitarian social welfare in case all agents use
modular utility functions [35].8 In fact, the class

8A utility function u is said to be modular if and only
if we have u(R1∪R2) = u(R1)+u(R2)−u(R1∩R2) for all
bundles R1 and R2. This means that the utility assigned
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of modular utility functions is also maximal in the
sense that for no class of functions strictly includ-
ing that class it would still be possible to guaran-
tee that agents using utility functions from this
larger class and negotiating only mutually ben-
eficial deals over single resources will eventually
reach an allocation with maximal utilitarian so-
cial welfare in all cases [21]. Related work has also
identified classes of utility functions (and ordinal
preference relations) that guarantee the conver-
gence to optimal allocations for sequences of deals
involving at most k resources each [20].

7 Complexity Results

A growing body of work within the study of
MARA considers various concepts of complexity,
not only in the standard sense of computational
complexity theory but also in terms of concepts
such as communication complexity. Such work
comprises both positive results—e.g. algorithms
with provably efficient performance characteris-
tics, properties of restricted classes of allocation
settings, etc.—and a large collection of negative
results that suggest many naturally arising de-
cision and optimisation problems are unlikely to
admit generally applicable algorithmic solutions.
Within this section our aim is to review extant
work that has addressed such questions and to
catalogue related open problems.

7.1 Models and Assumptions

The structure we consider in the subsequent text
will be referred to as a resource allocation setting,
by which we mean a triple 〈A,R,U〉 where:

– A = {1, 2 . . . , n} is a set of n agents;

– R = {r1, r2, . . . , rm} is a collection of m re-
sources; and

– U = {u1, u2, . . . , un} describes the utility
function ui : 2R → Q for the agent i ∈ A.

We assume that each r ∈ R is indivisible and non-
shareable, i.e. at most one agent at a time will
“own” r (see also Section 3). An allocation of

to a bundle of resource can be computed as the sum of the
utilities of the individual resources in that bundle, i.e. the
classes of modular and 1-additive functions coincide.

the resources in R among the agents in A is a
mapping P : A → 2R with P (i) ∩ P (j) = ∅ for
any i 6= j. The set of all allocations of R among A
will be denoted by Πn,m. From the fact that there
are n choices of agent for each of the m resources,
it is easily seen that |Πn,m| = nm.

7.2 Computational vs.
Communication Complexity

In very informal terms, traditional computational
complexity theory is concerned with the issue of
classifying computational problems with respect
to how much of a particular computational re-
source is required for their solution. Typically,
computational problems are phrased as decision
questions, i.e. given an input instance I, is it the
case that some property φ holds true of I? For
example, given a directed graph H(V,E) and a
vertex s in V , is it the case that every vertex
in V can be reached by some path that starts
in s? The concept of computational resource is
modelled via some formal model of computation.
Thus, time (space) as the (worst-case) number of
moves (tape cells) made by a (deterministic) 2-
tape Turing machine (DTM) that correctly clas-
sifies input instances, i.e. accepts if φ(I) = >,
rejects if φ(I) = ⊥. For further introductions
to computational complexity theory we refer the
reader to the textbook by Papadimitriou [69].

In the context of MARA problems, computa-
tional complexity results have tended to address
what might be termed “global” properties of given
resource allocation settings, e.g. whether alloca-
tions satisfying particular criteria exist. Recent
work, however, has begun to address computa-
tional properties of abstract high-level negotiation
protocols as reviewed in Section 6.4 above, e.g.
given some constraint, χ, that allowed deals must
satisfy, a number of decision problems may be for-
mulated regarding allocations that are reachable
from a starting allocation via sequences of χ-deals.

This view of complexity has not, in general,
needed to be concerned with “localised” ques-
tions, e.g. the overheads involved in describing
and implementing proposed deals; how many
deals may be needed in order to reach an allo-
cation with desirable properties, etc. In the work
of Endriss and Maudet [34] the term communica-
tion complexity, deriving from the model put for-
ward by Yao [100], is introduced to capture the
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combination of number of deals and communica-
tion to agree a deal that could be needed in order
for an allocation to be finalised. While the bulk
of the survey below is concerned with complex-
ity issues from the perspective of computational
complexity, we also discuss some results related
to communication from the works of Endriss and
Maudet [34] and Dunne [29], that consider upper
and lower bounds on the number of deals needed
in various contexts.

7.3 Allocations with Given Properties

Given a resource allocation setting, 〈A,R,U〉, the
agents concerned seek to bring about an alloca-
tion that will satisfy certain criteria. As discussed
in Section 5, such criteria may be purely quanti-
tative (e.g. the sum of the individual utility valu-
ations (utilitarian social welfare) is maximal (or is
above a given amount), but so-called qualitative
properties (Pareto-optimal or envy-free outcomes,
for instance) are also of interest.

7.3.1 Representation Issues

Standard computational complexity theory con-
siders properties of algorithms implemented
within some “well-defined” model of computation,
e.g. Turing machines. In order sensibly to con-
sider the performance of a specific algorithm, this
is reported as a function of the algorithm’s input
length. This convention presumes that, in com-
paring different algorithmic approaches to a par-
ticular problem, such comparisons are only “rea-
sonable” if the representation of input instances
is similar, or that (at worst) different formats can
be translated between efficiently.

In considering how instances are to be repre-
sented in the case of decision problems concern-
ing resource allocation settings, a significant is-
sue that arises is the encoding of the collection
of utility functions U . The domain of a utility
function is 2R: thus (from the viewpoint of upper
bounds on complexity) the characteristics of algo-
rithms employing an enumerative form (listing all
subset/value pairs) may not be comparable with
algorithms employing some compact representa-
tion. We therefore give complexity results for the
three different forms of representing utility func-
tions discussed in Section 4.1: the bundle form,
the SLP form, and the k-additive form (here the

2-additive form is of particular interest).

7.3.2 Quantitative Criteria

Two natural decision questions regarding the
measure swu of utilitarian social welfare, have
been considered with regard to each of the three
formalisms for representing utility functions:

Welfare Optimisation (WO)
Instance: 〈A,R,U〉; K ∈ Q
Question: ∃P ∈ Πn,m : swu(P ) ≥ K?

Welfare Improvement (WI)
Instance: 〈A,R,U〉; P ∈ Πn,m

Question: ∃Q ∈ Πn,m : swu(Q) > swu(P )?

WI and WO are both NP-complete for the repre-
sentation of utility functions in bundle form (re-
duction from Set Packing [18]); for the SLP
form (reduction from 3-Sat [32]); and for 2-
additive functions (the simplest proof is via a
reduction from Max-2-Sat [18]). Both the 2-
additive and SLP results apply even in systems
containing only 2 agents; the SLP reduction shows
that the problems remain NP-complete when
(both) utility functions are monotonic.

7.3.3 Qualitative Criteria

The qualitative measures of Pareto optimality
and envy-freeness give rise to the following de-
cision problems:

Pareto Optimality (PO)
Instance: 〈A,R,U〉; P ∈ Πn,m

Question: Is P Pareto optimal?

Envy-Freeness (EF)
Instance: 〈A,R,U〉
Question: ∃P ∈ Πn,m : P is envy-free?

Deciding PO is coNP-complete for both SLP
and 2-additive utility functions. The former was
shown by Dunne et al. [32] (reduction from 3-
UnSat restricted to instances with clause and
variable numbers equal); the latter, although not
explicitly stated by Chevaleyre et al. [18], is an
immediate consequence of their proof that WI is
NP-complete. Again both continue to hold in 2-
agent contexts, with the SLP reduction also ap-
plying to monotonic utility functions.
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EF is examined in a variety of cases in the
work of Bouveret and Lang [11]. They consider
a representation based on concise logic-based de-
scriptions of agent preferences (as discussed in
Section 4.1.3 above). In addition to the ba-
sic question of whether envy-free allocations are
possible—shown to be NP-complete even within
2-agent settings—the question of allocations that
combine envy-freeness with Pareto optimality is
examined (termed efficient envy-free, or EEF,
allocations). For such decision problems they
demonstrate completeness results ranging from
NP-complete up to Σp

2-complete, depending on
the restrictions placed on the preference relations.
That NP-completeness also holds for the ques-
tion EF within the SLP model in 2-agent settings
has been shown by Dunne [30] (reduction from
3-Sat).

7.4 Path and Convergence Properties

The collection of results referred to above, hold
independently of the regime used to negotiate al-
locations. There are, however, a number of ques-
tions that arise specifically in the context of dis-
tributed negotiation when the structure of ad-
missible deals is constrained. Thus suppose that
only individually rational deals may be used, i.e.
deals that are beneficial to all the agents involved.
If monetary side payments are allowed, then in-
dividually rational deals are deals 〈P,Q〉 under
which swu(Q) > swu(P ) [35]. As has been shown
by Sandholm [78], if additional constraints, such
as “all deals are bilateral and involve exactly one
resource changing” (sometimes called the class of
O-contracts), then there are cases where some ra-
tional deals cannot be implemented. A further
problem that arises is that, even when there is a
rational O-contract path to go from P to Q this
may involve an agent repeatedly making deals in-
volving the same resource, i.e. such paths may
contain more than m distinct deals.

In general, given some predicate Φ on deals, the
following decision problem arises:

Φ-Path
Instance: 〈A,R,U〉; P (s), P (t) ∈ Πn,m with

swu(P (t)) > swu(P (s))
Question: ∃∆ = 〈P (0), P (1), . . . , P (r)〉 s.t.

P (0) = P (s) and P (r) = P (t) and
∀1 ≤ i ≤ r, Φ(P (i−1), P (i))?

Dunne et al. [32] consider the complexity of Φ-
Path where Φ(P,Q) holds only if the deal is indi-
vidually rational and involves at most some given
number k of the resources being passed from one
agent to another. Within 2-agent settings using
SLP representation it is shown that Φ-Path is NP-
hard for all k ≤ m

3 (and for the case k = m
2 ). In

the special case of O-contracts (i.e. k = 1) NP-
hardness holds with both utility functions being
monotonic. Recent work, presented in Dunne and
Chevaleyre [31], improves this NP-hardness lower
bound and obtains an exact complexity classifi-
cation: Φ-Path is PSPACE-complete for Φ(P,Q)
holding if the deal is an individually rational O-
contract.

Introducing the idea of a maximal Φ-path (from
an initial allocation P ) as a sequence of deals ev-
ery one of which satisfies Φ and with the final
allocation, P (t) being such that for every Q it is
the case that ¬Φ(P (t), Q), leads to the following
related problem:

Φ-Convergence
Instance: 〈A,R,U〉
Question: Is it the case that ∀P ∈ Πn,m, for

all maximal Φ-paths ∆ starting
from P , the allocation last(∆)
these terminate in, is one which
maximises swu?

For instance, the basic convergence result first
proved by Sandholm [78] (discussed in Sec-
tion 6.4) shows that the answer to the above ques-
tion is always “yes” when Φ does not restrict
the range of admissible deals in any way. Φ-
Convergence is the subject of ongoing work which
has already established the following: For Φ corre-
sponding to individually rational O-contracts, Φ-
Convergence is coNP-complete for the SLP model
and for 4-additive utility functions [31] Both re-
sults hold in 2-agent settings. If all utility func-
tions are modular (i.e. 1-additive), then the an-
swer to Φ-Convergence is always “yes” [21].

We now return to an issue relating to the ideas
of communication complexity discussed above.
The question of interest also has a bearing on
establishing upper bounds on the complexity of
Φ-Path. Given a resource allocation setting and
Φ, consider the (rational) deals that can be im-
plemented by Φ-paths. Dunne [29] has introduced
the following measures:
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– Lopt(P,Q): the length of the shortest Φ-path
realising 〈P,Q〉.

– Lmax(A,R,U): the maximum value of
Lopt(P,Q) over those deals for which a Φ-
path exists.

– ρmax(n, m): The maximum value (taken
over all choices of utility function) of
Lmax(A,R,U).

– ρmax
C (n, m): As ρmax, but with the maximi-

sation taken over utility functions belonging
to some class C.

A related study (employing different terminology)
is given by Endriss and Maudet [34], where atten-
tion is focussed on utility functions which allow
any rational deal to be implemented via some se-
quence of rational O-contracts; the main case be-
ing considered in this respect is that of 1-additive
functions.

Let Φ(P,Q) hold if and and only if the deal
〈P,Q〉 is an individually rational O-contract:

– ρmax(n, m) ≤ nm −m(n− 1) [78]

– ρmax(n, m) ≥ 77
2562m − 1 [29]

– ρmax
1−add(n, m) = m [34]

– ρmax
mono(n, m) ≥ 77

1282
m
2 − 3 [29]

The latter two results pertain to the classes of 1-
additive and monotonic utility functions, respec-
tively. The constructed rational paths in the gen-
eral and monotonic lower bound cases are unique.

7.5 Open Problems and Conjectures

Given the existing results concerning the measure
swu wherein exact complexity classifications have
been derived for each of the three representation
styles for utility functions, the following conjec-
tures seem plausible and ought to be straightfor-
ward to verify.

Conjecture 1 Deciding if there is an allocation
P with swe(P ) ≥ K is NP-complete (whether U is
given in bundle form, SLP form, or is 2-additive).

Conjecture 2 Given K ∈ Q, deciding if
max{swu(P ) |P ∈ Πn,m} = K is DP -complete
(again in all three representation formalisms).

Conjecture 3 EF is NP-complete for 2-additive
utility functions.

8 Simulation Platforms

Theoretical work in Microeconomics and Auc-
tion Theory provides a very strong foundation
for analysing many resource allocation problems.
However, on occasion we may be faced with a
problem in which some of the assumptions un-
derlying the theory are violated. This is espe-
cially the case in MARA scenarios where compu-
tational concerns are prominent [25]. For exam-
ple, mechanism design as originally developed in
Economics is not concerned with computational
issues such as algorithmic or communication com-
plexity. In a conventional auction design scenario
issues such as the speed of winner determination
and the communication costs of submitting bids
are often not of significant concern since they are
not typically a bottleneck with respect to the en-
tire auction process which can involve protracted
and lengthy decision making by human traders.
However, in a market place run entirely by au-
tomated trading agents, such issues are likely to
be of more concern since their performance costs
can sometimes be of similar order of magnitude
as the overall computational costs of running the
auction. Once these costs are taken into ac-
count many of the results in auction theory be-
come somewhat brittle. For example, the revela-
tion principle no longer applies when transaction-
throughput and reduction in communication com-
plexity are adopted as design goals [74].

In such cases experimental work using simula-
tions of agent-based market places—Agent-based
Computational Economics (ACE) [93]—can shed
light on some of the grey areas that are difficult
to analyse using existing theoretical tools.

As with any software engineering problem, in
choosing an appropriate software framework in
which to implement an ACE simulation it is im-
portant to consider the requirements that the
software needs to meet. In this section, we give
an overview of the typical requirements addressed
by ACE software, and we then proceed to give
an overview of some commonly-used simulation
frameworks.

8.1 Simulation vs. Implementation

Software for simulating multiagent systems typ-
ically addresses different requirements from that
designed to implement multiagent systems. Al-
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though it is natural to view a MAS implementa-
tion as its own simulation, there are a number of
problems with such an approach, which we shall
address in turn.

Firstly, ideally we would like the outcome of a
simulation experiment to be exactly reproducible
given the initial conditions of the experiment.
This is not always possible in a MAS implemen-
tation since many environmental factors will be
beyond the experimenter’s control. For example,
the precise outcome of an experiment may depend
on the exact timing with which an agent responds
to a particular message, and this time interval
will depend on factors beyond the experimenter’s
control, such as the memory and CPU currently
available to the agent.

Secondly, when we come to analyse the results
of a simulation, we often need to generalise be-
yond a single run of an experiment with a single
set of initial conditions. Typically, we generalise
by taking many samples of free initial variables
and running the experiment many times for each
sample. Simulation frameworks are equipped to
log data from the outcome of each experiment to a
format suitable for analysis using statistical anal-
ysis software, such as MATLAB.

Thirdly, the performance considerations of a
simulation are qualitatively different to that of
an implementation. The software architecture of
a MAS implementation is driven by real-world
requirements that do not always hold in a sim-
ulation context. For example, trading agents
need to be able to run on different machines
due to commercial and practical considerations.
This distributed parallelism is detrimental to raw
system-level performance however, since inter-
host network communication overheads dominate
other performance considerations. By running all
agents on the same host we can achieve several
orders of magnitude performance increase. This
would be an impractical solution for a real MAS
trading implementation. However, such consider-
ations do not apply in a simulation context, and
by relaxing these constraints we can achieve a sig-
nificant gain in performance.

Similarly, much of the technical complexity of a
real MAS implementation addresses requirements
that are not present in a simulation context. For
instance, MAS implementations need to be ro-
bust against system failures, and they need to re-

spond quickly to real-time asynchronous events.
This necessitates a highly parallel software archi-
tecture, involving, for example, many threads of
execution running simultaneously. Such consid-
erations do not apply in agent-based simulation,
since real-time parallelism can be simulated using
a sequential program, and this greatly reduces the
complexity of the software (and hence the poten-
tial for bugs).

Finally, any MAS interacts at some point with
the environment. In a MARA scenario, for exam-
ple, the environment might constitute economi-
cally relevant characteristics of the human owners
of agents, such as their utility functions. Unlike
the agents in a MAS implementation, the environ-
ment is not a software entity in a MAS implemen-
tation, and cannot be directly ported to an agent-
based simulation. Rather, the environment itself
must be simulated. Agent-based simulation toolk-
its allow for the abstract statistical simulation of
environmental factors. Hence a key feature of any
simulation toolkit is a library of pseudo-random
number generators (PRNGs). A good simulation
toolkit will provide high quality PRNGs, such as
the Mersenne Twister PRNG [64], with extremely
large periods, low statistical correlation, and the
ability to produce random numbers according to
arbitrary (non-uniform) distributions.

In summary, when developing a system to simu-
late a MARA scenario, it is important to choose a
framework or toolkit that is specifically designed
for agent-based simulation, as opposed to toolkits
such as JADE [51] that are designed for imple-
menting multiagent systems.

8.2 Simulating Time

For practical purposes we often prefer to simulate
the parallelism of events using sequential com-
putation, rather than execute the simulation of
multiple simultaneous events in parallel in real-
time. This necessitates a framework for comput-
ing the outcome of events that occur simultane-
ously. There are several approaches to simulating
time in a model.

8.2.1 Continuous Time Models

Many physical processes are characterised
by smooth and continuous changes in time-
dependent variables. Differential equation models
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are common in analytical microeconomics. Such
models are applicable approximations of real
market places when there are very large numbers
of participants in the market since individual
characteristics of the participants play a less
significant role and the entities in the system can
be treated as simple and homogeneous particles.
However, these models break down when the
number of participants becomes very small and
the individual and strategic characteristics of the
participants become more prominent.

Agent-based models address this issue by pro-
viding a richer structure with which to model
market participants. In such models, macro-level
variables describing the ensemble of agents no
longer vary smoothly with time. This necessitates
alternative approaches to temporal modelling.

8.2.2 Discrete-event Simulation

Discrete-event simulation frameworks [4, 42]
model time in discrete quanta called ticks. In-
tuitively, a tick can be thought of as an “instant”
of time. During the simulation of a tick—the tick
cycle—entities (agents) in the simulation signal
which agents they interact with during that in-
stant of time by sending events to each other.
Individual events specify the exact nature of the
interaction between agents. In an auction simula-
tion, for example, an auctioneer agent may send
an end-of-auction event to all trading agents in
the auction when it has closed. At the end of a
tick cycle, once events have been exchanged, each
entity updates its internal state in response to any
events it has received.

8.3 Agent Modelling

In a MARA simulation, agents often need to
make intelligent decisions in their resource util-
isation and acquisition behaviour. The intelligent
agents community has traditionally favoured sym-
bolic approaches, such as the class of BDI (Belief-
Desire-Intention) models. In a MARA scenario,
however, an agent’s goals are often quantitative in
nature; for example, agents act to maximise their
expected utility. In the field of agent-based elec-
tronic commerce, this has led to the adoption of
Bayesian approaches to agent’s decision problems
such as (multiagent) reinforcement learning.

Many agent-based simulation frameworks have

been developed by the Artificial Life (ALife) com-
munity. Agents in ALife models are imbued
with very little intelligent behaviour at the out-
set; rather, intelligent behaviour emerges col-
lectively from the complex interactions between
agents equipped with relatively crude decision
making machinery. Connectionist approaches
such as neural networks and evolutionary ap-
proaches such as genetic algorithms, are popular
in such models.

Since simulation is the main methodology used
in ALife research, ALife software toolkits tend to
be the most mature in terms of simulation func-
tionality. Correspondingly, since empirical meth-
ods are relatively rare in MAS research, there are
few frameworks for simulating BDI agents, as op-
posed to implementing BDI agents.

8.4 Extensibility and Integration

When conducting research via simulation it is of-
ten necessary to extend the existing functionality
of the system. Although all frameworks provide
the ability to configure simulations, the desired
behaviour cannot always be implemented by con-
figuring the existing components provided by the
framework. In this case it is necessary for the re-
searcher to implement the desired behaviour by
writing their own code. Toolkits take two main
approaches to allowing extensibility: They allow
either for scripting in a custom language or for
the introduction of new classes and methods via
inheritance.

8.5 Software Listing

We are now going to give a brief overview of
some commonly used general-purpose simulation
frameworks that might be suitable for analysing
MARA problems.

8.5.1 Swarm

Swarm [91] is one of the most famous ALife soft-
ware toolkits and has been continually improved
by an active community of users and develop-
ers since the early 1990s. It provides an API
for discrete-event simulation, uses high-quality
PRNGs, allows for spatial modelling, and includes
real-time visualisation tools. Swarm is an open-
source project written in the Objective-C pro-
gramming language.
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8.5.2 Extensions to Swarm

The Evo toolkit [36] is an extension to Swarm
that provides agents with the ability to mate and
evolve new behaviour over time using a system
similar to genetic programming.

MAML [63] is an extension to Swarm that pro-
vides a higher-level scripting language that is sim-
pler to use than Objective-C. The goal is to allow
researchers from the social sciences, who are not
necessarily skilled programmers, to quickly de-
velop simulations.

8.5.3 RePast

RePast [75] is another toolkit inspired by Swarm,
but is written entirely in Java, and the ulti-
mate design goals of this system are more MAS-
rather than ALife-oriented. It offers similar fea-
tures as Swarm (discrete-event simulation, high-
quality PRNGs, spatial modelling, visualisation
tools) and it is also open-source and extensible.

The core simulation functionality of RePast is
particularly mature and robust (it use the COLT
library for high-performance scientific comput-
ing). The MAS-oriented features, on the other
hand, are still relatively immature (no explicit re-
inforcement learning, no BDI support).

8.5.4 Desmo-J

Desmo-J [26] is implemented in Java and pro-
vides raw discrete-event simulation functionality.
While only providing minimal functionality, the
system comes with a highly flexible, well-designed
API. It uses the standard Java PRNG, but the
API should allow other (more advanced) PRNGs
to be plugged in as well.

8.5.5 AScape

AScape [3] is a Java-based discrete-event simula-
tion framework with an emphasis on spatial mod-
elling of agents.

8.5.6 DEx

DEx [27] is a high-performance toolkit provid-
ing high-quality PRNGs, discrete-event simula-
tion, spatial modelling, and real-time visualisa-
tion tools (including 3D representation).

9 Conclusion

We have presented a survey of salient issues
in Multiagent Resource Allocation (MARA), a
timely and fast-developing area of research at the
interface of Computer Science and Economics.
Naturally, the choice of topics selected for detailed
presentation has been driven, at least in part, by
personal interests and preferences. Nevertheless,
we are confident that this material will prove use-
ful to many researchers working on different as-
pects of MARA and related disciplines.

In the first part of the paper, after a short in-
troduction to the field, we have highlighted four
major application domains, which together both
demonstrate the wide scope of MARA and under-
line the urgent need to further advance the field
to meet the enormous challenges still posed by
these applications. The second part of the pa-
per serves as a catalogue of fundamental concepts
in MARA: generic properties of resources charac-
terising a MARA problem at hand; languages for
preference representation to model the interests of
individual agents; and social welfare measures and
related tools to assess the overall quality of an al-
location of resources. The third part of the paper
then addresses actual MARA techniques. This in-
cludes, in particular, an introduction to allocation
procedures and a selection of relevant complexity
results. Where theoretical results alone are not
sufficient, our survey of simulation platforms can
serve as a starting point for experimental work.

Two important issues that we have not cov-
ered are the algorithmics of MARA and the game-
theoretical analysis of negotiation (and bidding)
strategies. The former includes the design of al-
gorithms for the winner determination problem
in combinatorial auctions, and a survey of recent
work in this area is available elsewhere [81]. The
literature on game-theoretical issues in negotia-
tion, multiagent systems, and Computer Science
in general is vast and fast-developing. A good
starting point for readers interested in the com-
putational approach to Game Theory (and the
game-theoretic approach to Computer Science) is
the short paper by Papadimitriou [70].

Acknowledgements. This survey has been
written in the context of the activities of the
AgentLink Technical Forum Group on Multiagent
Resource Allocation (TFG-MARA).



MULTIAGENT RESOURCE ALLOCATION TFG-MARA 33

References

[1] S. Aknine, S. Pinson, and M. F. Shakun. An
extended multi-agent negotiation protocol.
Journal of Autonomous Agents and Multi-
Agent Systems, 8(1):5–45, 2004.

[2] K. J. Arrow, A. K. Sen, and K. Suzumura,
editors. Handbook of Social Choice and
Welfare. North-Holland, 2002.

[3] AScape System. http://www.brook.edu/es/
dynamics/models/ascape/main.htm.

[4] J. Banks, J. Carson, B. Nelson, and
D. Nicol. Discrete-event System Simulation.
Prentice Hall, 4th edition, 2005.

[5] S. Benferhat, C. Cayrol, D. Dubois, J. Lang,
and H. Prade. Inconsistency management
and prioritized syntax-based entailment.
In Proc. 13th International Joint Con-
ference on Artificial Intelligence (IJCAI-
1993), pages 640–647. Morgan Kaufmann,
1993.

[6] M. Bichler, J. Kalagnanam, and H. S. Lee.
RECO: Representation and evaluation of
configurable offers. In H. K. Bhargava and
N. Ye, editors, Computational Modeling and
Problem Solving in the Networked World:
Interfaces in Computing and Optimization.
Kluwer, 2003.

[7] R. A. Bourne and R. Zaidi. A quote-
driven automated market. In Proc. AISB
Symposium on Information Agents for E-
Commerce. AISB, 2001.

[8] C. Boutilier, F. Bacchus, and R. I. Braf-
man. UCP-networks: A directed graph-
ical representation of conditional utilities.
In Proc. 17th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-2001),
pages 56–64. Morgan Kaufmann, 2001.

[9] C. Boutilier, R. I. Brafman, C. Domshlak,
H. H. Hoos, and D. Pool. CP-nets: A tool
for representing and reasoning with condi-
tional ceteris paribus preference statements.
Journal of Artificial Intelligence Research,
21:135–191, 2004.

[10] S. Bouveret, H. Fargier, J. Lang, and
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